OR/MA/ST706 References
OR/MA/ST 706: References
Textbook
D. G. Luenberger and Y. Ye, “Linear and Nonlinear Programming,” 4th Edition, 2016, Springer, ISBN 978-3-319-18842-3 (eBook)
References
- Apostol, T.M., 1974. Mathematical Analysis, 2nd ed., Reading, Mass: Addison-Wesley.
- R.T. Rockafellar, Convex Analysis, Princeton University Press, ISBN: 0691080690, 1972.
- P.E. Gill, W. Murray, M.H. Wright: Practical Optimization, QA402.5 .G54, 1981.
- G.P. McCormick, Nonlinear Programming: Theory, Algorithms and Applications, T57.8 .M39, 1983.
- M.S. Bazaraa, H.D. Sherali and C.M. Shetty: Nonlinear Programming: Theory and Algorithms, T57.8 .B39, 1993.
- S. Boyd, L. Vandenberghe: Convex Optimization, QA402.5 .B69, 2004.
- A. Nemirovski. Lectures on Modern Convex Optimization, ISYE, Georgia Tech., 2005.
- E. G. Birgin and J. M. Martinez. Practical Augmented Lagrangian Methods for Constrained Optimization, Society of Industrial and Applied Mathematics, ISBN 978-1-611973-35-8, 2014.
- C.J. Goh, X.Q. Yang: Duality in Optimization and Variational Inequalities, ISBN: 0415274796, 2002.
- F. Facchinei, J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, ISBN: 038795581X, 2003.
- S.-C. Fang, W. Xing. Linear Conic Programming, Science Press, ISBN: 9787030381767, 2013.
- A. Messac. Optimization in Practice with Matlab, Cambridge Univ. Press, ISBN: 9781107109186, 2015.
- P. Flach. Machine Learning, Cambridge University Press, ISBN 978-0-511973-00-0, 2012.
- SR. Gunn. Support vector machines for classification and regression. ISIS technical report. 1998 May 10;14(1):5-16.
- Charu C. Aggarwal, Neural Networks and Deep Learning, 2018, Springer, ISBN-13: 978-3319944623.