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120 Technical Notes 

'LINEAR' PROGRAMMING WITH ABSOLUTE-VALUE 
FUNCTIONALS 

David F. Shanno 

University of Toronto, Toronto, Ontario, Canada 

and 

Roman L. Wei l  

Universi ty  of Chicago, Chicago, Illinois 

(Received November 24, 1969) 

Consider the problem A x = b ;  max z= x c,jx,i.  This problenl cannot, in 
general, be solved with the simplex method. The problem has a simplex- 
method solution (with unrestricted basis entry) only if c ,  are nonpositive 
(nonnegative for minimizing problems). 

C O N S I D E R  the problem 

maximize z= c j ( x j / ,subject to A x = b .  (1) 

Parts of the literature imply that  the standard simplex method can be used to 
solve this problem. We point out in this note that  such a n  implication is correct 
only if all c j  are nonpositive (nonnegative for minimizing problems). Otherwise 
the simplex method must be drastically modified. The primary application of 
absolute-value functionals in linear programming has been for absolute-value or 
11-metric regression analysis. Such application is always a minimization problem 
with all c j  equal to  1 so that  the required conditions for valid use of the simplex 
method are met. First, we review what the literature has said; next we show a n  
example to  demonstrate the nongenerality of the implied solution; finally, we ex- 
plain precisely what is happening when absolute-value functionals are used and 
what little can be done about the problem. [See Note 1.] 

THE LITERATURE 

ONE,PERHAPS the only, clear implication that  the simplex method can be used for 
linear programming problems with absolute-value functionals is in a problem by 
HADLEY[reference 3, p. 1721, which we reproduce in full: 

5-12. Show how the simplex method can be used to solve a problem of the follow- 
ing type: A x = b ,  max z = x  c , / x , / .  The variables x ,  are unrestricted, and lxll is the 
absolute value of x , .  Show that the same technique can be used if the cost corre- 
sponding to a negative x ,  is different from that  corresponding to a positive x,. The 
activity vector for x ,  remains, of course, the same, regardless of whether x ,  is positive 
or negative. 

Hadley presents no suggested solution, bu t  we assume the implied method is 
that  used by CHARNES AND COOPER[^] and by  WAGNER^^] for their particular prob- 
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lems of 11-metric regression. The technique, first used by CHARNES, COOPER,AND 

FERGUSOX,[~]is to replace each unrestricted variable (e.g., x j) in the constraints by 
the difference of two new nonnegative variables (e.g., xj+-xj-) and to give each of 
the new variables the appropriate c j  in the functional. The c j  need not, as Hadley 
says, be the same for xj+ as for xj-. 

The conditions for successful application of adjacent-extreme-point methods 
derived, for example, by RIARTOS[~I and by Hadley [reference 4, p. 1241 only im-
plicitly rule out maximizing (minimiring) absolute-value functionals with positive 
(negative) c j .  Nowhere in the literature have we been able to find an explicit 
injunction against such attempts. We believed until recently that general ab- 
solute-value 'linear' programming was possible with adjacent-extreme-point meth- 
ods and unrestricted basis entry. 

A more general formulation of the absolute-value programming problem is 

maximize x:;" ciifL(t)l, subject to At=b, 110 ,  (2) 

where A is a p Xm matrix, b a p-vector, t an m-vector, and 

f : ( t )  = C;zlmcuijti-pi. (3) 

But this is the actual form of the 11-regression function, where the t i  represent the 
regression coefficients, the ci are the weights given to the respective data points, 
and pi are the values observed for the independent variables ai j .  This is equiva- 
lent to the form (1) if we use the transformation of Charnes, Cooper, and Fergu- 
son[2] and we define xi+-xiP=fi(t), xi+, xi-LO. 

I t  will be seen below that the trouble, which can arise in absolute-value linear 
programming, is that, in maximizing problen~s with positive c j  or in minimizing 
problems with negative cj, there exist local optima that are not global optima. 

Example. 

maximize 1x1,subject to  -41x52,  x unrestricted in sign. (4) 

Any general solution method for (I) should work for (4). In order to 'solve' this 
problem by the simples method we redefine, using the notation of Charnes and 
Cooper [reference I ,  pp. 334 ff.], x =x+-x-, x+, x-20; we rewrite the con-
straints x 2 -4 as -x++x-$4 and x $2 as x+-x- S2.  

Restate problem (4) as a standard linear program: 

max (x++x-), subject to  -xC+x-S4, xf -2-52,  x', 2-20. (4') 

After appending nonnegative slack variables sl and s2, we write an initial tableau: 

We choose, arbitrarily, to pivot in the x+ column to obtain the second tableau: 
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We see that we want next to pivot in the x- column, but all its elements are non- 
positive so that the introduction of x- leads to an unbounded solution: x+ =2  +0, 
x-=0, for arbitrarily large positive 0 is feasible with arbitrarily large objective 
function value 2 $20. 

If, instead, we had chosen to pivot in the x- column in the initial tableau: the 
signal for an unbounded solution would also occur. Further, an unbounded solu- 
tion will occur if the original objective function had been minimize z = -/ x 1 .  

MATHEMATICAL ANALYSIS OF THE PROBLEM 

TIIEPURPOSE OF this section is to demonstrate the conditioils for failure of the 
simplex method when applied to the absolute-value linear programming problem 
(see Note 2). Consider the problem 

maximize C:J: c,lx,l,subject to  Ax= b,  2>0, (7) 

where A is an m Xn matrix, b an m-vector, x an n-vect or. Let 

and note that 1 xi I = I  xi+-xi- 1 =xi++xi- if and only if not botlz xif and xi- are 
nonzero. Under this restriction, we reformulate (7)  as 

maximize (Cjf;" cixi++C:I," cixi-), sltbject to A^?= b,  ?2O, 


w h e r e A ^ = ( ~ ,-A),?=(x1+, . . . , x , ,+ ,x~- , . . . , x , , - ) ,  and (9) 


The restriction that causes the failure of the simplex method is the last restric- 
tion in (9), namely that xi+xi-=0, the restricted basis entry condition. We first 
show that, if ci <O, this constraint is automatically handled by the simplex method. 
In  order to demonstrate this, suppose xi+ > O  for some i. Then the column ai+ cor- 
responding to xi+ in (9) is in the basis. Since aif is in the basis, we have 

Now ci <O, so that zi+<O. Since ai- = -ai+ (ai- is the column corresponding to 
xip), we have z i  = -zi+, so xi->O. Also, from (10) and the fact that c,, assumed 
for the moment to be negative, is the cost coefficient for both xi+ and xi-, it must be 
true that 

Because the problem is a maximization problem, ai will never become a candidate 
to enter the basis. The simplex method will converge to the proper optimum. 

Suppose instead that ci >0, while xi+ > O  and at+ again is in the basis. Repeat-
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ing the above analysis, we have zi'-ci =0, -c;  <0, so xi+ >O. Then zi- = -si+ <0, 
so that 

Thus if x,+ enters thebasis, x,- alzuays becomes a candidate to enter the basis. Xotv 
since a,+ is in the basis and B-'a,+ =e,, where B is the basis inatris and es is some 
unit vector, 

From (12) and (13), if xi+ is in the basis, xi- can always be entered in such a way 
as to generate an arbitrarily large value for z, and the problem has an  unbounded 
solution. Thus when c; <0, the simplex algorithm must be modified to guarantee 
that the restricted basis entry condition xi+x;- =O is satisfied. This is precisely the 
modificatioii of the sinlples algorithm used in separable programming problems 
for which convergence to a local optimurn is assured; see Iiadley [reference 4, p. 
10'71. Unfortunately, the local optimum found is often not a global optimum, and 
the problem of determining the global optimum becomes a eombinatorial problem. 
Thus, in the exarnl~le above, there are two local ~naxirna, z = 2  and x = -4, and the 
one found by the simplex method depends entirely on which vector is first selected 
to enter the basis. 

Until now we have assumed that the c; associated with si+ is the same as t>he 
ci associated with xi-. As the problem quoted froin Hadley suggests, x i f  inay 
have a ci+ different from c r  associated with xi-. However, extending the above 
analysis it can be shown that the simples method will converge to an absolute 
maximurn with unrestricted basis entry only when -ci- 2ci f  ( -c;+ 2 ci- for miai- 
mizing). 

NOTES 

1. We first became aware of this problem in discussioiis with JOHN P. GOULD. 
A. CHARNES,My.W. COOPER, and JOHN P. EVANS provided useful advice on an 
earlier version. They are in no way responsible for the existence nor, certainly, 
the contents of this one. Research support was provided in part by the General 
Electric Foundation through n grant to the Graduate School of Business of the 
University of Chicago, and in part by the National Science Foundation under 
grants to the University of Chicago. 

2. One referee found an elegant proof, which used duality theory, to show that 
the simples method must, in general, fail. Our presentation here is less elegant 
(and longer) but shows how the simplex method fails. 
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This note describes a method for locating any number of facilities optimally 
in relation to  any number of existing facilities. The objective is t o  mini- 
mize the  total  of load-times-distance costs in the  system. Any amount of 
loading may be present between the  new facilities and the  existing facilities 
and between the new facilities themselves. Distances are assumed to  be 
rectangular. 

RECENT contributions to mathematical location theory include a considerable 
amount of work on what is often called the Steiner-Weber problem; these 

include articles by COOPER,[^] SEYMOUR,[~] AND KuHN.[~]In  itsand KUENNE 
sirnplest form, the Steiner-Weber problem concerns itself with the location of a 
center on a plane such that the sum of distances from that center to a number of 
given fixed points is minimized. This problem has been generalized in many 
ways. The aim of this note is to discuss some aspects of the Steiner-Weber prob- 
lem under the assumption, not of Euclidean straight-line distances, but of rectangu- 
lar distances. Previous work on models with rectangular distances has been done 
by BINDSCHEDLER MOO RE[^] and by FRANC IS.["^^'^AND 

We define the rectangular distance between two points in n-dimensional 
space, (21, x2, . . .,xn) and (zl, z2, . . .,z,), to be 

D12= zif;"Ixi-zil. 	 (1) 

Figure 1shows that the distance between points A and R in two dimensions can be 
measured along paths a, b, or c. 
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