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Abstract

Optimization is a critical component in deep learning. We think optimization for neural net-

works is an interesting topic for theoretical research due to various reasons. First, its tractability

despite non-convexity is an intriguing question, and may greatly expand our understanding of

tractable problems. Second, classical optimization theory is far from enough to explain many

phenomenons. Therefore, we would like to understand the challenges and opportunities from

a theoretical perspective, and review the existing research in this field. First, we discuss the

issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and

then discuss practical solutions including careful initialization, normalization methods, and skip

connections. Second, we review generic optimization methods used in training neural networks,

such as stochastic gradient descent (SGD) and adaptive gradient methods, and existing theoret-

ical results. Third, we review existing research on the global issues of neural network training,

including results on global landscape, mode connectivity, lottery ticket hypothesis and neural

tangent kernel (NTK).

1 Introduction

Optimization has been a critical component of neural network research for a long time. However,

it is not clear at first sight whether neural network problems are good topics for theoretical study,

as they are both too simple and too complicated. On one hand, they are “simple” because typical

neural network problems are just a special instance of a unconstrained continuous optimization

problem (this view is problematic though, as argued later), which is itself a subarea of optimization.

On the other hand, neural network problems are indeed “complicated” because of the composition

of many non-linear functions. If we want to open the “black box” of the neural networks and

look carefully at the inner structure, we may find ourselves like a child in a big maze with little

clue what is going on. In contrast to the rich theory of many optimization branches such as

convex optimization and integer programming, the theoretical appeal of this special yet complicated

unconstrained problem is not clear.

That being said, there are a few reasons that make neural network optimization an interesting

topic of theoretical research. First, neural networks may provide us a new class of tractable op-
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timization problems beyond convex problems. A somewhat related analogy is the development of

conic optimization: in 1990’s, researchers realized that many seemingly non-convex problems can

actually be reformulated as conic optimization problems (e.g. semi-definite programming) which

are convex problems, thus the boundary of tractability has advanced significantly. Neural network

problems are surely not the worst non-convex optimization problems and their global optima could

be found relatively easily in many cases. Admittedly, they are also not the best non-convex prob-

lems either. In fact, they are like wild animals and proper tuning is needed to make them work,

but if we can understand their behavior and tame these animals, they will be very powerful tools

to us.

Second, existing nonlinear optimization theory is far from enough to explain the practical be-

havior of neural network training. A well known difficulty in training neural-nets is called “gradient

explosion/vanishing” due to the concatenation of many layers. Properly chosen initialization and/or

other techniques are needed to train deep neural networks, but not always enough. This poses a

great challenge for theoretical analysis, because what conditions are needed for theoretical analysis

is not very clear. Even proving convergence (to stationary points) of the existing method with the

practically used stepsize seems a difficult task. In addition, some seemingly simple methods like

SGD with cyclical step-size and Adam work very well in practice, and the current theory is far from

explaining their effectiveness. Overall, there is still much space for rigorous convergence analysis

and algorithm design.

Third, although the basic formulation a theoretician has in mind (and the focus of this article)

is an unconstrained problem, neural network is essentially a way to parametrize the optimization

variable and thus can be applied to a wide range of problems, including reinforcement learning

and min-max optimization. In principle, any optimization problem can be combined with neural

networks. As long as a cascade of multiple parameters appears, the problem suddenly faces all

the issues we discussed above: the parametrization may cause complicated landscape, and the

convergence analysis may be quite difficult. Understanding the basic unconstrained formulation

is just the first step towards understanding neural networks in a broader setting, and presumably

there can be richer optimization theory or algorithmic ingredients that can be developed.

To keep the survey simple, we will focus on the supervised learning problem with feedforward

neural networks. We will not discuss more complicated formulations such as GANs (generative

adversarial networks) and deep reinforcement learning, and do not discuss more complicated ar-

chitecture such as RNN (recurrent neural network), attention and Capsule. In a broader context,

theory for supervised learning contains at least representation, optimization and generalization (see

Section 1.1), and we do not discuss representation and generalization in detail.

This article is written for researchers who are interested in theoretical understanding of opti-

mization for neural networks. Prior knowledge on optimization methods and basic theory will be

very helpful (see, e.g., [23, 189, 30] for preparation). Existing surveys on optimization for deep

learning are intended for general machine learning audience, such as Chapter 8 of the book Good-

fellow et al. [75]. These surveys often do not discuss optimization theoretical aspects in depth.

In contrast, in this article, we emphasize more on the theoretical results while trying to make it
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accessible for non-theory readers. Simple examples that illustrate the intuition will be provided if

possible, and we will not explain the details of the theorems.

1.1 Big picture: decomposition of theory

A useful and popular meta-method to develop theory is decomposition. We first briefly review

the role of optimization in machine learning, and then discuss how to decompose the theory of

optimization for deep learning.

Representation, optimization and generalization. The goal of supervised learning is to

find a function that approximates the underlying function based on observed samples. The first

step is to find a rich family of functions (such as neural networks) that can represent the desirable

function. The second step is to identify the parameter of the function by minimizing a certain loss

function. The third step is to use the function found in the second step to make predictions on

unseen test data, and the resulting error is called test error. The test error can be decomposed into

representation error, optimization error and generalization error, corresponding to the error caused

by each of the three steps.

In machine learning, the three subjects representation, optimization and generalization are

often studied separately. For instance, when studying representation power of a certain family

of functions, we often do not care whether the optimization problem can be solved well. When

studying the generalization error, we often assume that the global optima have been found (see

[93] for a survey of generalization). Similarly, when studying optimization properties, we often do

not explicitly consider the generalization error (but sometimes we assume the representation error

is zero).

Decomposition of optimization issues. Optimization issues of deep learning are rather

complicated, and further decomposition is needed. The development of optimization can be divided

into three steps. The first step is to make the algorithm start running and converge to a reasonable

solution such as a stationary point. The second step is to make the algorithm converge as fast as

possible. The third step is to ensure the algorithm converge to a solution with a low objective value

(e.g. global minima). There is an extra step of achieving good test accuracy, but this is beyond the

scope of optimization. In short, we divide the optimization issues into three parts: convergence,

convergence speed and global quality.

Optimization issues


Local issues

{
Convergence issue: gradient explosion/vanishing

Convergence speed issue

Global issues: bad local minima, plaeaus, etc.

Most works are reviewed in three sections: Section 4, Section 5 and Section 6. Roughly speaking,

each section is mainly motivated by one of the three parts of optimization theory. However, this

partition is not precise as the boundaries between the three parts are blurred. For instance, some

techniques discussed in Section 4 can also improve the convergence rate, and some results in Section

6 address the convergence issue as well as global issues. Another reason of the partition is that
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Optimization terms optimization variable objective stepsize

Deep learning terms weight, parameter training loss learning rate

Table 1: Optimization and machine learning terminology: the terms in the same column represent the same thing.

they represent three rather separate subareas of neural network optimization, and are developed

somewhat independently.

1.2 Terminology and Outline

Terminology. The terminology of optimization and deep learning are somewhat different, and in

this article we use them interchangeably. See Table 1 for a comparison of some major terms.

Outline. The structure of the article is as follows. In Section 2, we present the formulation of a

typical neural network optimization problem for supervised learning. In Section 3, we present back

propagation (BP) and discuss the basic convergence results. In Section 4, we discuss neural-net

specific tricks for training a neural network, and some underlying theory. In particular, we discuss

a major challenge called gradient explosion/vanishing, and review main solutions such as careful

initialization and normalization methods. In Section 5, we discuss generic algorithm design which

treats neural networks as generic non-convex optimization problems. In particular, we review SGD

with various learning rate schedules, adaptive gradient methods, large-scale distributed training,

second order methods and the existing convergence and iteration complexity results. In Section

6, we review research on global optimization of neural networks, including global landscape, mode

connectivity, lottery ticket hypothesis and neural tangent kernel (NTK).

2 Problem Formulation

In this section, we present the optimization formulation for a supervised learning problem. Suppose

we are given data points xi ∈ Rdx , yi ∈ Rdy , i = 1, . . . , n, where n is the number of samples. The

input instance xi can represent a feature vector of an object, an image, a vector that presents a

word, etc. The output instance yi can represent a real-valued vector or scalar such as in a regression

problem, or an integer-valued vector or scalar such as in a classification problem.

We want the computer to predict yi based on the information of xi, so we want to learn the

underlying mapping that maps each xi to yi. To approximate the mapping, we use a neural network

fθ : Rdx → Rdy , which maps an input x to a predicted output ŷ. A standard fully-connected neural

network is given by

fθ(x) = WLφ(WL−1 . . . φ(W 2φ(W 1x))), (1)

where φ : R → R is the neuron activation function (sometimes simply called “activation” or

“neuron”), W j is a matrix of dimension dj × dj−1, j = 1, . . . , L and θ = (W 1, . . . ,WL) represents

the collection of all parameters. Here we define d0 = dx and dL = dy. When applying the scalar
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function φ to a vector v, we apply φ to each entry of v. Another way to write down the neural

network is to use a recursion formula:

z0 = x; zl = φ(W lzl−1), l = 1, . . . , L. (2)

Note that in practice, the recursive expression should be zl = φ(W lzl−1 + bl). For simplicity of

presentation, throughout the paper, we often skip the “bias” term bl in the expression of neural

networks and just use the simplified version (2).

We want to pick the parameter of the neural network so that the predicted output ŷi = fθ(xi)

is close to the true output yi, thus we want to minimize the distance between yi and ŷi. For a

certain distance metric `(·, ·), the problem of finding the optimal parameters can be written as

min
θ
F (θ) ,

1

n

n∑
i=1

`(yi, fθ(xi)). (3)

For regression problems, `(y, z) is often chosen to be the quadratic loss function `(y, z) = ‖y− z‖2.

For binary classification problem, a popular choice of ` is `(y, z) = log(1 + exp(−yz)).
Technically, the neural network given by (2) should be called fully connected feed-forward

networks (FCN). Neural networks used in practice often have more complicated structure. For

computer vision tasks, convolutional neural networks (CNN) are standard. In natural language

processing, extra layers such as “attention” are commonly added. Nevertheless, for our purpose

of understanding the optimization problem, we mainly discuss the FCN model (2) throughout this

article, though in few cases the results for CNN will be mentioned.

For a better understanding of the problem (3), we relate it to several classical optimization

problems.

2.1 Relation with Least Squares

One special form of (3) is the linear regression problem (least squares):

min
w∈Rd×1

‖y − wTX‖2, (4)

where X = (x1, . . . , xn) ∈ Rd×n , y ∈ R1×n. If there is only one linear neuron that maps the input

x to wTx and the loss function is quadratic, then the general neural network problem (3) reduces

to the least square problem (4). We explicitly mention the least square problem for two reasons.

First, it is one of the simplest forms of a neural network problem. Second, when understanding

neural network optimization, researchers have constantly resorted to insight gained from analyzing

linear regression.

2.2 Relation with Matrix Factorization

Neural network optimization (3) is closely related to a fundamental problem in numerical computa-

tion: matrix factorization. If there is only one hidden layer of linear neurons and the loss function
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is quadratic, and the input data matrix X is the identity matrix, the problem (3) reduces to

min
W1,W2

‖Y −W2W1‖2F , (5)

where W2 ∈ Rdy×d1 , W1 ∈ Rd1×n, Y ∈ Rdy×n and ‖ · ‖F indicates the Frobenious norm of a matrix.

If d1 < min{n, dy}, then the above problem gives the best rank-d1 approximation of the matrix

Y . Matrix factorization is widely used in engineering, and it has many popular extensions such as

non-negative matrix factorization and low-rank matrix completion. Neural network can be viewed

as an extension of two-factor matrix factorization to multi-factor nonlinear matrix factorization.

3 Gradient Descent: Implementation and Basic Analysis

A large class of methods for neural network optimization are based on gradient descent (GD). The

basic form of GD is

θt+1 = θt − ηt∇F (θt), (6)

where ηt is the step-size (a.k.a. “learning rate”) and ∇F (θt) is the gradient of the loss function for

the t-th iterate.

In the rest of the section, we first discuss the computation of the gradient by “backpropagation”,

then discuss classical convergence analysis for GD.

3.1 Computation of Gradient: Backpropagation

The discovery of backpropagation (BP) was considered an important landmark in the history of

neural networks. From an optimization perspective, it is just an efficient implementation of gradient

computation 1. To illustrate how BP works, suppose the loss function is quadratic and consider the

per-sample loss of the non-linear network problem Fi(θ) = ‖yi −WLφ(WL−1 . . .W 2φ(W 1xi))‖2.
The derivation of BP applies to any i, thus for simplicity of presentation we ignore the subscript i,

and use x and y instead. In addition, to distinguish the per-sample loss with the total loss F (θ),

we use F0(θ) to denote the per-sample loss function:

F0(θ) = ‖y −WLφ(WL−1 . . .W 2φ(W 1x))‖2. (7)

We define an important set of intermediate variables:

z0 = x, h1 = W 1z0,

z1 = φ(h1), h2 = W 2z1,

...,
...

zL−1 = φ(hL−1), hL = WLzL−1.

(8)

1While using GD to solve an optimization problem is straightforward, discovering BP is historically nontrivial.
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Here, hl is often called pre-activation since it is the value that flows into the neuron, and zl

is called post-activation since it is the value comes out of the neuron. Further, define Dl =

diag(φ′(hl1), . . . , φ′(hldl)), which is a diagonal matrix with the t-th diagonal entry being the derivative

of the activation function evaluated at the t-th pre-activation hlt.

Let the error vector e = 2(hL − y) 2. The gradient over weight matrix W l is given by

∂F0

∂W l
= (WLDL−1 . . .W l+2Dl+1W l+1Dl)T e(zl−1)T , l = 1, . . . L. (9)

Define a sequence of backpropagated error as

eL = e,

eL−1 = (DL−1WL)T eL,

. . . ,

e1 = (D1W 2)T e2.

(10)

Then the partial gradient can be written as

∂F0

∂W l
= el(zl−1)T , l = 1, 2, . . . , L. (11)

This expression does not specify the details of computation. A naive method to compute all

partial gradients would require O(L2) matrix multiplications since each partial gradient requires

O(L) matrix multiplications. Many of these multiplication are repeated, thus a smarter algorithm

is to reuse the multiplications, similar to the memorization trick in dynamical programming. More

specifically, the algorithm back-propagation computes all partial gradients in a forward pass and a

backward pass. In the forward pass, from the bottom layer 1 to the top layer L, post-activation

zl is computed recursively via (8) and stored for future use. After computing the last layer output

fθ(x) = hL, we compare it with the ground-truth y to obtain the error e = `(hL, y). In the backward

pass, from the top layer L to the bottom layer 1, two quantities are computed at each layer l. First,

the backpropagated error el is computed according to (10), i.e., left-multiplying el+1 by the matrix

(Dl−1W l)T . Second, the partial gradient over the l-th layer weight matrix W l is computed by

(11), i.e., multiply the backward signal el and the pre-stored feedforward signal (zl−1)T . After the

forward pass and the backward pass, we have computed the partial gradient for each weight (for

one sample x). By a small modification to this procedure, we can implement stochastic gradient

method instead of GD, which we skip here.

Rigorously speaking, the term “backpropagation” refers to algorithm that computes the partial

gradients, i.e., for a mini-batch of samples, computing the partial gradients in one forward pass

and one backward pass. Nevertheless, it is also often used to describe the entire learning algorithm,

especially SGD.

2If the loss function is not quadratic, but a general loss function `(y, hL), we only need to replace e = 2(hL − y)

by e = ∂`
∂hL

.
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3.2 Basic Convergence Analysis of GD

In this subsection, we discuss what classical convergence results can be applied to a neural network

problem with minimal assumptions. Convergence analysis tailored for neural networks under strong

assumptions will be discussed in Section 6. Consider the following question:

Does gradient descent converge for neural network optimization (3)? (12)

Meaning of “convergence”. There are multiple criteria of convergence. Although we wish

that the iterates converge to a global minimum, a more common statement in classical results is

“every limit point is a stationary point” (e.g. [23]). Besides the gap between stationary points and

global minima (will be discussed in Section 6), this claim does not exclude a few undesirable cases:

(U1) the sequence could have more than one limit points; (U2) limit points could be non-existent
3, i.e., the sequence of iterates can diverge. For this section, let us be satisfied with this criterion

of convergence.

Convergence theorems. There are mainly two types of convergence results for gradient

descent. Proposition 1.2.1 in [23] applies to the minimization of any differentiable function, but it

requires line search that is relatively uncommon in large-scale training due to the computation cost,

so we skip it here. A result more well-known in machine learning area requires Lipschitz smooth

gradient. Proposition 1.2.3 in [23] states that if ‖∇F (w) −∇F (v)‖ ≤ β‖w − v‖ for any w and v,

and we use GD with constant stepsize less than 2/β to solve the problem, then every limit point

of the sequence generated by this algorithm is a stationary point.

These theorems require the existence of a global Lipschitz constant β of the gradient. However,

for neural network problem (3) a global Lipschitz constant does not exist, thus there is a gap

between the theory and practice. Is there a simple way to fix this gap?

One solution is to add an assumption that the iterates are always bounded. Another simple

solution is to add a ball constraint to the network parameters, and use gradient projection (GP)

method. The gradient is Lipschitz continuous in a ball, then according to Proposition 2.3.2 of

[23] every limit point of the sequence produced by GP with stepsize less than 2/β is a stationary

point (which is not the point satisfying ∇F (w) = 0 but the KKT point of the ball-constrained

problem). Using a ball constraint is not theoretically perfect due to various reasons (e.g. many

results discussed in this survey are proved for unconstrained problems, which do not directly apply

to constrained problems), but can be a reasonable justification of gradient descent type methods. A

bigger challenge is that the Lipschitz constant can be very large or small, causing a major training

difficulty. This is closely related to “gradient explosion/vanishing”, and the point of departure for

the next section.

3In logic, the statement “every element of the set A belongs to the set B” does not imply the set A is non-empty;

if the set A is empty, then the statement always holds. For example, “every dragon on the earth is green” is a correct

statement, since no dragon exists.
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4 Neural-net Specific Tricks

Without any prior experience, training a neural network to achieve a reasonable accuracy can be

rather challenging. Nowadays, after decades of trial and research, people can train a large network

relatively easily (at least for some applications such as image classification). In this section, we will

describe some main tricks needed for training a neural network.

4.1 Possible Slow Convergence Due to Explosion/Vanishing

The most well-known difficulty of training deep neural-nets is probably gradient explo-

sion/vanishing. A common description of gradient explosion/vanishing is from a signal processing

perspective. Gradient descent can be viewed as a feedback correction mechanism: the error at the

output layer will be propagated back to the previous layers so that the weights are adjusted to

reduce the error. Intuitively, when signal propagates through multiple layers, it may get amplified

at each layer and thus explode, or get attenuated at each layer and thus vanish. In both cases, the

update of the weights will be problematic.

We illustrate the issue of gradient explosion/vanishing via a simple example of 1-dimensional

problem:

min
w1,w2,...,wL∈R

F (w) , 0.5(w1w2 . . . wL − 1)2. (13)

The gradient over wi is

∇wiF = w1 . . . wi−1wi+1 . . . wL(w1w2 . . . wL − 1) = w1 . . . wi−1wi+1 . . . wLe, (14)

where e = w1w2 . . . , wL − 1 is the error. If all wj = 2, then the gradient has norm 2L−1|e| which

is exponentially large; if all wj = 1/2, then the gradient has norm 0.5L−1e which is exponentially

small.

Example: F (w) = (w7−1)2, where w ∈ R (similar to the example analyzed in [180]). This is a

simpler version of (13). The plot of the function is provided in Figure 1. The region [−1 + c, 1− c]
is flat, which corresponds to vanishing gradient (here c is a small constant, e.g. 0.2). The regions

[1 + c,∞] and [−∞,−1 − c] are steep, which correspond to exploding gradient. Near the global

minimum w = 1, there is a good basin that if initializing in this region GD can converge fast. If

initializing outside this region, say, at w = −1, then the algorithm has to traverse the flat region

with vanishing gradients which takes a long time. This is the main intuition behind [180] which

proves that it takes exponential time (exponential in the number of layers L) for GD with constant

stepsize to converge to a global minimum if initializing near wi = −1,∀i.
Theoretically speaking, why is gradient explosion/vanishing a challenge? This 1-dimensional

example shows that gradient vanishing can make GD with constant stepsize converge very slowly.

In general, the major drawback of gradient explosion/vanishing is the non-convergence within

polynomial time, due to a large condition number of Hessian matrices and difficulty in picking a

proper step-size. More specifically, gradient explosion/vanishing will affect the convergence speed
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Figure 1: Plot of the function F (w) = (w7 − 1)2, which illustrates the gradient explosion/vanishing issues. In the region

[−0.8, 0.8], the gradients almost vanish; in the region [1.2,∞] and [−∞,−0.8], the gradients explode.

in the following way. First, the convergence speed is often determined by the condition number of

the Hessian matrices. Gradient explosion/vanishing means that each component of the gradient

can be very large or very small, thus the diagonal entries of the Hessian matrix, which are per-entry

Lipschitz constants of the gradient, can be very large or small. As a result, the Hessian matrix may

have a highly dynamic range of diagonal entries, causing a possibly exponentially large condition

number. Second, estimating a local Lipschitz constant is too time consuming, thus in practice we

often pick a constant step-size or use a fixed step-size schedule. If the Lipschitz constant changes

dramatically along the trajectory of the algorithm, then a constant stepsize could be much smaller

than the theoretical step-size, thus significantly slowing down the algorithm.

How to resolve the issue of gradient explosion/vanishing? For the 1-dimensional example dis-

cussed above, one can choose an initial point inside the basin near the global minimum. Similarly,

for a general high-dimensional problem, one solution is to choose an initial point inside a “good

basin” that allows the iterates move fast. In the next subsection, we will discuss initialization

strategies in detail.

4.2 Careful Initialization.

In the rest of this section, we will discuss three major tricks for training deep neural networks. In

this subsection, we discuss the first trick: careful initialization.

As discussed earlier, exploding/vanishing gradient regions indeed exist and occupy a large por-

tion of the whole space, and initializing in these regions will make the algorithm fail. Thus, a

natural idea is to pick the initial point in a nice region to start with.

Naive Initialization Since the “nice region” is unknown, the first thought is to try some

simple initial points. One choice is the all-zero initial point, and another choice is a sparse initial

point that only a small portion of the weights are non-zero. Yet another choice is to draw the

weights from certain random distribution. Trying these initial points would be painful as it is not

easy to make them always work: even if an initialization strategy works for the current problem, it

might fail for other neural network problems. Thus, a principled initialization method is needed.

Random initialization with specific variance. (Bottou initialization or LeCun initializa-
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tion 4) Early works in 1980’s Bottou [28] and LeCun et al. [110] described an initialization method

for neural-nets with sigmoid activation functions as follows:

E(W l
ij) = 0, var(W l

ij) =
1

dl−1
, l = 1, 2, . . . , L; i = 1, . . . , dl−1; j = 1, . . . , dl. (15)

In other words, the variance of each weight is 1/fan-in, where fan-in is the number of weights fed

into the node. Although simple, this is a non-trivial finding. It is not hard to tune the scaling of

the random initial point to make it work, but one may find that one scaling factor does not work

well for another network. It requires some understanding of neural-nets to realize that adding the

dependence on fan-in can lead to a tuning-free initial point.

Pre-training and Xavier initialization. In late 2000’s, the revival of neural networks was

attributed to pre-training methods that provide good initial point (e.g. [87, 58]). Partially mo-

tivated by this trend, Xavier Glorot and Bengio [73] analyzed signal propagation in deep neural

networks at initialization, and proposed an initialization method known as Xavier initialization (or

Glorot initialization, Glorot normalization):

E(W l
ij) = 0, var(W l

ij) =
2

dl−1 + dl
, l = 1, 2, . . . , L; i = 1, . . . , dl−1; j = 1, . . . , dl, (16)

or sometimes written as var(Wij) = 2/(fan-in + fan-out), where fan-in and fan-out are the in-

put/output dimensions. One example is a Gaussian distribution W l
ij ∼ N (0, 2

dl−1+dl
), and another

example is a uniform distribution W l
ij ∼ Unif[−

√
6√

dl−1+dl
,

√
6√

dl−1+dl
].

Xavier initialization can be derived as follows. For feed-forward signal propagation, according

to the same argument as Bottou initialization, one could set the variance of the weights to be

1/fan-in. For the backward signal propagation, according to (10), el = (W l+1)T el+1 for a linear

network. By a similar argument, one could set the variance of the weights to be 1/fan-out. To

handle both feedforward and backward signal propagation, a reasonable heuristic is to set E(w) =

0, var(w) = 2/(fan-in + fan-out) for each weight, which is exactly (16).

Kaiming initialization. Bottou initialization and Xavier initialization were designed for sig-

moid activation functions which have slope 1 in the “‘linear regime” of the activation function.

ReLU (rectified linear units) activation [74] became popular after 2010, and He et al. [85] noticed

that the derivation of Xavier initialization can be modified to better serve ReLU 5. The intuition

is that for a symmetric random variable ξ, E[ReLU(ξ)] = E[max{ξ, 0}] = 1
2E[ξ], i.e., ReLU cuts

half of the signal on average. Therefore, they propose a new initialization method

E(W l
ij) = 0, var(W l

ij) =
2

din
or var(W l

ij) =
2

dout
. (17)

4This initialization is sometimes called LeCun initialization, but it appeared first in Page 9 of Bottou [28], as

pointed out by Bottou in private communication, so a proper name may be “Bottou-initialization”.
5Interestingly, ReLU was also popularized by Glorot et al. [74], but they did not apply their own principle to the

new neuron ReLU.
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LSUV. The previously discussed initialization methods are data-independent, and it is nat-

ural to design a data-dependent initialization method. Mishkin and Matas [142] proposed layer-

sequential unit-variance (LSUV) initialization that consists of two steps: first, initialize the weights

with orthogonal initialization (e.g., see Saxe et al. [175]), then for each mini-batch, normalize the

variance of the output of each layer to be 1 by directly scaling the weight matrices. It shows

empirical benefits for some problems.

Infinite width networks with general non-linear activations. The derivation of Kaiming

initialization cannot be directly extended to general non-linear activations. Even for one dimen-

sional case where di = 1, ∀i, the output of 2-layer neural network ŷ = φ(w2φ(w1x)) for random

weights w1, w2 ∈ R is a complicated random distribution. To handle this issue, Poole et al. [167]

proposed to use mean-field approximation to study infinite-width networks. Roughly speaking,

based on the central limit theorem that the sum of a large number of random variables is approx-

imately Gaussian, the pre-activations of each layer are approximately Gaussians, and then they

study the evolution of the variance of each layer. Note that this analysis is closely related to neural

tangent kernel [91] discussed in Section 6.3.2, which also analyzes infinite-width networks.

Analysis of finite width networks. The analysis of infinite-width networks can explain the

experiments on very wide networks, but narrow networks may exhibit different behavior. A rigorous

quantitative analysis is given in Hanin and Rolnick [83], which analyzed finite width networks with

ReLU activations. Their analysis might be helpful for explaining why training deep networks is

difficult (note that there are other conjectures on the training difficulty of deep networks; e.g.

[157]).

Dynamical isometry. Another line of research that aims to understand signal propagation is

based on the notion of dynamical isometry [175]. It means that the input-output Jacobian (defined

below) has all singular values close to 1. Consider a neural-net f(x) = φ(WLφ(WL−1 . . . φ(W 1x))),

which is slightly different from (1) (with an extra φ at the last layer). Its “input-output Jacobian”

is
∂zL

∂z0
= ΠL

l=1(DlW l),

where Dl is a diagonal matrix with entries being the elements of φ′(hl1, . . . , h
l
dl

).

Saxe et al. [175] studied orthogonal initialization for deep linear networks. A formal analysis

for deep non-linear networks with infinite width was provided in Pennington et al. [164, 165]. They

used tools from free probability theory to compute the distribution of all singular values of the

input-output Jacobian (more precisely, the limiting distribution as the width goes to infinity). An

interesting discovery is that dynamical isometry can be achieved when using sigmoid activation and

orthogonal initialization, but cannot be achieved for Gaussian initialization. Note that one needs

to carefully pick σ2
w, σ2

b and ‖x‖2, and simply using orthogonal initialization is not enough, which

partially explains why Saxe et al. [175] did not observe the benefit of orthogonal initialization.

Dynamical isometry for CNN. One obstacle of applying orthogonal initialization to practical

networks is convolution operators: it is not clear at all how to compute an “orthogonal” convolution

operator. Xiao et al. [215] proposed two orthogonal initialization methods for CNN, and the simpler
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and better version DeltaOrthogonal initialization is available in standard deep learning libraries.

With DeltaOrthogonal initialization, they can train a 10000-layer CNN without other tricks like

batch-normalization or skip connections (these tricks are discussed later).

Dynamical isometry for other networks. The analysis of dynamical isometry has been

applied to other neural networks as well. Li and Nguyen [117] analyzed dynamical isometry for

deep autoencoders, and showed that it is possible to train a 200-layer autoencoder without tricks

like layer-wise pre-training and batch normalization. Gilboa et al. [72] analyzed dynamical isometry

for LSTM and RNNs, and proposed a new initialization scheme that performs much better than

traditional initialization schemes in terms of reducing training instabilities.

Meta-initialization. Dauphin and Schoenholz [42] proposed another data-dependent initial-

ization method. Their intuition is that a good initialization makes gradient descent easier by

starting in regions that “look locally linear with minimal second order effects”. They proposed a

quantitative measure called “gradient quotient” that formalizes this intuition, and used an addi-

tional optimization algorithm that finds an initial point with small gradient quotient. [42] used

DeltaOrthogonal initialization as s a starting point and used its meta-initialization method to find

a better initial point. The found initial point can achieve the state-of-the-art result, without using

normalization methods.

4.3 Normalization Methods

The second approach is normalization during the algorithm. This can be viewed as an extension of

the first approach: instead of merely modifying the initial point, this approach modifies the network

for all the following iterates. One representative method is batch normalization (BatchNorm) [90],

which is a standard technique nowadays.

Essence of BatchNorm. The goal of BatchNorm is to normalize the output at each layer

across samples. The essence of BatchNorm method in [90] is to view the normalization step as a

nonlinear transformation “BN” and add BN layers to the original neural network. BN layers play

the same role as the activation function φ and other layers (such as max pooling layers). This

modification can be consistent with BP as long as the chain rule of the gradient can be applied, or

equivalently, the gradient of this operation BN can be computed. Note that a typical optimization-

style solution would be to add constraints that encode the requirements; in contrast, the solution of

BN is to add a non-linear transformation to encode the requirements. This is a typical neural-net

style solution.

Understanding BatchNorm. The original BatchNorm paper claims that BatchNorm reduces

the “internal covariate shift”. Santurkar et al. [174] argues that internal covariate shift has little

do with the success of BatchNorm, and the major benefit of BatchNorm is to reduce the Lipschitz

constants (of the objective and the gradients). Bjorck et al. [25] shows that the benefit of BatchNorm

is to allow larger learning rate, and discusses the relation with initialization schemes. Arora et al.

[12], Cai et al. [34], Kohler et al. [105] analyzed the theoretical benefits of BatchNorm (mainly

larger or auto-tuning learning rate) under various settings. Ghorbani et al. [71] numerically found
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that for networks without BatchNorm, there are large isolated eigenvalues, while for networks with

BatchNorm this phenomenon does not occur.

Other normalization methods. One issue of BatchNorm is that the mean and the variance

for each mini-batch is computed as an approximation of the mean/variance for all samples, thus if

different mini-batches do not have similar statistics then BN does not work very well. Researchers

have proposed other normalization methods such as weight normalization [173], layer normalization

[13], instance normalization [200], group normalization [214] and spectral normalization [143] and

switchable normalization [132].

4.4 Changing Neural Architecture

The third approach is to change the neural architecture. Around 2014, people noticed that from

AlexNet [106] to Inception [193], the neural networks get deeper and the performance gets better,

thus it is natural to further increase the depth of the network. However, even with smart initial-

ization and BatchNorm, people found training more than 20-30 layers is very difficult. As shown

in [86], for a given network architecture VGG, a 56-layer network achieves worse training and test

accuracy than a 20-layer network 6. Thus, a major challenge at that time was to make training an

“ultra-deep” neural network possible.

ResNet. The key trick of ResNet [86] is simple: adding an identity skip-connection for every

few layers. More specifically, ResNet changes the network from (2) to

z0 = x; zl = φ(F(W l, zl−1) + zl−1), l = 1, . . . , L, (18)

where F represents a few layers of the original networks, such as F(W1,W2, z) = W1φ(W2z). Note

that a commonly seen expression of ResNet (especially in theoretical papers) is zl = F(W l, zl−1) +

zl−1, which does not have the extra φ(·), but (18) is the form used in practical networks. Note that

the expression (18) only holds when the input and output have the same dimension; to change the

dimension across layers, one could use extra projection matrices (i.e. change the second term zl−1

to U lzl−1) or use other operations (e.g. pooling). In theoretical analysis, the form of (18) is often

used.

ResNet has achieved remarkable success: with the simple trick of adding identity skip connection

(and also BatchNorm), ResNet with 152 layers greatly improved the best test accuracy at that

time for a few computer vision tasks including ImageNet classification (improving top-5 error to a

remarkable result 3.57%).

Other architectures. Neural architecture design is one of the major threads of current deep

learning research. Other popular architecture related to ResNet include high-way networks [190],

DenseNet [89] and ResNext [216]. While these architectures are designed by humans, another recent

trend is the automatic search of neural architectures (neural architecture search) [240]. There are

also intermediate approaches: search one or few hyper-parameters of the neural-architecture such

6Note that this difficulty is probably not due to gradient explosion/vanishing, and perhaps related to singularities

[157].
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as the width of each layer [224, 195]. Currently, the state-of-the-art architectures (e.g. EfficientNet

[195]) for ImageNet classification can achieve much higher top-1 accuracy than ResNet (around

85% v.s. 78 %) with the aid of a few extra tricks.

Analysis of ResNet and initialization. Understanding the theoretical advantage of ResNet

or skip connections has attracted much attention. The benefits of skip connections are likely due to

multiple factors, including better generalization ability (or feature learning ability), better signal

propagation and better optimization landscape. For instance, Orhan and Pitkow [157] suggests

that skip connections improve the landscape by breaking symmetry.

Following the theme of this section on signal propagation, we discuss some results on the signal

propagation aspects of ResNet. As mentioned earlier, Hanin [82] discussed two failure modes for

training; in addition, it proved that for ResNet if failure mode 1 does not happen then failure

mode 2 does not happen either. Tarnowski et al. [196] proved that for ResNet, dynamic isometry

can be achieved for any activation (including ReLU) and any bi-unitary random initialization

(including Gaussian and Orthogonal initialization). In contrast, for the original (non-residual)

network, dynamic isometry is achieved only for orthogonal initialization and certain activations

(excluding ReLU).

Besides theoretical analysis, some works further explored the design of new initialization schemes

such as [219, 15, 231]. Yang and Schoenholz [219] analyzed randomly initialized ResNet and showed

that the optimal initial variance is different from Xavier or He initialization and should depend on

the depth. Balduzzi et al. [15] analyzed ResNet with recursion zl+1 = zl+βW l ·ReLU(zl), where β

is a scaling factor. It showed that for β-scaled ResNet with BatchNorm and Kaiming intialization,

the correlation of two input vectors scales as 1
β
√
L

, thus it suggests a scaling factor β = 1/
√
L. Zhang

et al. [231] analyzed the signal propagation of ResNet carefully, and proposed Fixup initialization

which leads to good performance on ImageNet, without using BatchNorm.

4.5 Training Ultra-Deep Neural-nets

There are a few approaches that can currently train very deep networks (say, more than 1000 layers)

nowadays to reasonable test accuracy for image classification tasks.

• The most well-known approach uses all three tricks discussed above (or variants): proper

initialization, proper architecture (e.g. ResNet) and BatchNorm.

• Using FixUp initialization or meta-initialization [42]) in ResNet 7 [231].

• Only using a carefully chosen initial point such as orthogonal initialization [215], without the

help of normalization methods or ResNet.

Besides the three tricks discussed in this section, there are quite a few design choices that are

probably important for achieving good performance of neural networks. These include but not

7Note that these two papers also uses a certain scalar normalization trick that is much simpler than BatchNorm.
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limited to data processing (data augmentation, adversarial training, etc.), optimization methods

(optimization algorithms, learning rate schedule, learning rate decay, etc.), regularization (`2-norm

regularization, dropout, etc.), neural architecture (depth, width, connection patterns, filter num-

bers, etc.) and activation functions (ReLU, leaky ReLU, ELU, tanh, swish, etc.). We have only

discussed three major design choices which are relatively well understood in this section. We will

discuss a few other choices in the following sections, mainly the optimization methods and the

width.

5 General Algorithms for Training Neural Networks

In the previous section, we discussed neural-net specific tricks. These tricks need to be combined

with an optimization algorithm such as SGD, and are largely orthogonal to optimization algorithms.

In this section, we discuss optimization algorithms used to solve neural network problems, which

are often generic and can be applied to other optimization problems as well.

For a more detailed tutorial of standard methods for machine learning (not just deep learning),

see Bottou, Curtis and Nocedal [30] and Curtis and Scheinberg [41]

5.1 SGD and learning-rate schedules

We can write (3) as a finite-sum optimization problem:

min
θ
F (θ) ,

1

B

B∑
i=1

Fi(θ). (19)

Each Fi(θ) represents the sum of training loss for a mini-batch of training samples (e.g. 32, 64 or

512 samples), and B is the total number of mini-batches (smaller than the total number of training

samples n). The exact expression of Fi does not matter in this section, as we only need to know

how to compute the gradient ∇Fi(θ).
Currently, the most popular class of methods are SGD and its variants. Theoretically, SGD

works as follows: at the t-th iteration, randomly pick i and update the parameter by

θt+1 = θt − αt∇Fi(θt).

In practice, the set of all samples are randomly shuffled at the beginning of each epoch, then

split into multiple mini-batches. At each iteration, one mini-batch is loaded into the memory for

computation (computing mini-batch gradient and performing weight update).

Vanilla learning rate schedules. Similar to the case in general nonlinear programming, the

choice of step-size (learning rate) is also important in deep learning. In the simplest version of

SGD, constant step-size αt = α works reasonably well: it can achieve a very small training error

and relatively small test error for many common datasets. Another popular version of SGD is to

divide the step-size by a fixed constant once every few epochs (e.g. divide by 10 every 5-10 epochs)
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or divide by a constant when stuck. Some researchers refer to SGD with such simple steps-size

update rule as ”vanilla SGD”.

Learning rate warmup. “Warmup” is a commonly used heuristic in deep learning. It means

to use a very small learning rate for a number of iterations, and then increases to the “regular”

learning rate. It has been used in a few major problems, including ResNet [86], large-batch training

for image classification [78], and many popular natural language architectures such as Transformer

networks [201] BERT [47]. See Gotmare et al. [77] for an empirical study of warmup.

Cyclical learning rate. An interesting variant is SGD with cyclical learning rate ([184, 129]).

The basic idea is to let the step-size bounce between a lower threshold and an upper threshold.

In one variant called SGDR (Smith [184]), the general principle is to gradually decrease and then

gradually increase step-size within one epoch, and one special rule is to use piecewise linear step-

size. A later work [185] reported “super convergence behavior” that SGDR converges several times

faster than SGD in image classification. In another variant of Ioshchilov et al. [129], within one

epoch the step-size gradually decreases to the lower threshold and suddenly increases to the upper

threshold (”restart”). This “restart” strategy resembles classical optimization tricks in, e.g., Powell

[168] and O’Donoghue and Candes [155]. Gotmare et al. [77] studied the reasons of the success of

cyclical learning rates, but a thorough understanding remains elusive.

5.2 Theoretical analysis of SGD

In the previous subsection, we discussed the learning rate schedules used in practice; next, we

discuss the theoretical analysis of SGD. The theoretical convergence of SGD has been studied for

decades (e.g., [133]). For a detailed description of the convergence analysis of SGD, we refer the

readers to Bottou et al. [30]. However, there are at least two issues of the classical analysis. First,

the existing analysis assumes Lipschitz continuous gradients similar to the analysis of GD, which

cannot be easily justified as discussed in Section 3.2. We put this issue aside, and focus on the

second issue that is specific to SGD.

Constant v.s. diminishing learning rate. The existing convergence analysis of SGD often

requires diminishing step-size , such as ηt = 1/tα for α ∈ (1/2, 1] [133, 30]. Results for SGD

with constant step-size also exist (e.g., [30, Theorem 4.8]), but the gradient does not converge

to zero since there is an extra error term dependent on the step-size. This is because SGD with

constant stepsize may finally enter a “confusion zone” in which iterates jump around [133]. Early

works in deep learning (e.g. LeCun et al. [110]) suggested using diminishing learning rate such as

O(1/t0.7), but nowadays constant learning rate works quite well in many cases. For practitioners,

this unrealistic assumption on the learning rate makes it harder to use the theory to guide the

design of the optimization algorithms. For theoreticians, using diminishing step-size may lead to a

convergence rate far from practical performance.

New analysis for constant learning rate: realizable case. Recently, an explanation of

the constant learning rate has become increasingly popular: if the problem is realizable (the global
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optimal value is zero), then SGD with constant step-size does converge [177, 202] 8. In other

words, if the network is powerful enough to represent the underlying function, then the stochastic

noise causes little harm in the final stages of training, i.e., realizability has an “automatic variance

reduction” effect [126]. Note that “zero global minimal value” is a strong assumptions for a general

unconstrained optimization problem, but the purpose of using neural networks is exactly to have

strong representation power, thus “zero global minimal value” is a reasonable assumption in deep

learning. This line of research indicates that neural network optimization has special structure,

thus classical optimization theory may not provide the best explanations for neural-nets.

Acceleration over GD. We illustrate why SGD is faster than GD by a simple realizable

problem. Consider a least squares problem minw∈Rd
1

2n

∑n
i=1(yi−wTxi)2, and assume the problem

is realizable, i.e., the global minimal value is zero. For simplicity, we assume n ≥ d, and the data

are normalized such that ‖xi‖ = 1,∀i. It can be shown (e.g. [202, Theorem 4]) that the convergence

rate of SGD with learning rate η = 1 is n
d
λmax
λavg

times better than GD, where λmax is the maximum

eigenvalue of the Hessian matrix 1
nXX

T and λavg is the average eigenvalue of the same matrix.

Since 1 ≤ λmax
λavg

≤ d, the result implies that SGD is n/d to n times faster than GD. In the extreme

case that all samples are almost the same, i.e., xi ≈ x1, ∀ i, SGD is about n times faster than GD

(this simple example was pointed out by, e.g., Bottou [29]). In the above analysis, we assume each

mini-batch consists of a single sample. When there are N mini-batches, SGD is roughly 1 to N

times faster than GD. In practice, the acceleration ratio of SGD over GD depends on many factors,

and the above analysis can only provide some preliminary insight for understanding the advantage

of SGD.

5.3 Momentum and accelerated SGD

Another popular class of methods are SGD with momentum and SGD with Nesterov momentum.

SGD with momentum works as follows: at the t-th iteration, randomly pick i and update the

momentum term and the parameter by

mt = βmt−1 + (1− β)∇Fi(θt); θt+1 = θt − αtmt.

We skip the expression of SGD with Nesterov momentum here (see, e.g., [171]).

They are the stochastic versions of the heavy-ball method and accelerated gradient method,

but are commonly rebranded as “momentum methods” in deep learning. They are widely used

in machine learning area not only because of faster speed than vanilla SGD in practice, but also

because of the theoretical advantage for convex or quadratic problems. In particular, heavy-ball

method achieves a better convergence rate than vanilla GD for convex quadratic functions, and

Nesterov’s accelerated gradient method achieves a better convergence rate for convex functions; see

Appendix A for more detailed discussions.

8Rigorously speaking, the conditions are stronger than realizability (e.g. weak growth condition in [202]). For

certain problems such as least squares, realizablity is enough since it implies the weak growth condition in [202].
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Theoretical advantage of SGD with momentum. The classical results on the benefit of

momentum only apply to the batch methods (i.e. all samples are used at each iteration). It is

interesting to understand whether momentum can improve the speed of the stochastic version of

GD in theory. Unfortunately, even for convex problems, achieving such a desired acceleration is

not easy according to various negative results (e.g. [49, 48, 103]). For instance, Kidambi et al.

[103] showed that there are simple quadratic problem instances that momentum does not improve

the convergence speed of SGD. Note that this negative result of [103] only applies to the naive

combination of SGD and momentum terms for a general convex problem.

There are two ways to obtain better convergence rate than SGD. First, by exploiting tricks

such as variance reduction, more advanced optimization methods (e.g. [124, 2]) can achieve an

improved convergence rate that combines the theoretical improvement of both momentum and

SGD. However, these methods are somewhat complicated, and are not that popular in practice.

Defazio and Bottou [45] analyzed the reasons why variance reduction is not very successful in

deep learning. Second, by considering more structure of the problem, simpler variants of SGD can

achieve acceleration. Jain et al. [92] incorporated statistical assumption of the data to show that a

certain variant is faster than SGD. Liu and Belkin [125] considered realizable quadratic problems,

and proposed a modified version of SGD with Nesterov’s momentum which is faster than SGD.

Accelerated SGD for non-convex problems. The above works only apply to convex

problems and are thus not directly applicable to neural network problems which are non-convex.

Designing accelerated algorithms for general non-convex problems is quite hard: even for the batch

version, accelerated gradient methods cannot achieve better convergence rate than GD when solving

non-convex problems. There have been many recent works that design new methods with faster

convergence rate than SGD on general non-convex problems (e.g. [36, 35, 217, 59, 3] and references

therein). These methods are mainly theoretical and not yet used by practitioners in deep learning

area. One possible reason is that they are designed for worst-case non-convex problems, and do

not capture the structure of neural network optimization.

5.4 Adaptive gradient methods: AdaGrad, RMSProp, Adam and more

The third class of popular methods are adaptive gradient methods, such as AdaGrad [57], RMSProp

[199] and Adam [104]. We will present these methods and discuss their empirical performance and

the theoretical results.

Descriptions of adaptive gradient methods. AdaGrad works as follows: at the t-th itera-

tion, randomly pick i, and update the parameter as (let ◦ denote entry-wise product)

θt+1 = θt − αtv−1/2
t ◦ gt, t = 0, 1, 2, . . . , (20)

where gt = ∇Fi(θt) and vt =
∑t

j=1 gj ◦ gj . In other words, the step-size for the k-th coordinate is

adjusted from αt in standard SGD to αt/
√∑t

j=0 g
2
j,k where gj,k denotes the k-th entry of gj .

One drawback of AdaGrad is that it treats all past gradients equally, and it is thus natural to

use exponentially decaying weights for the past gradients. This new definition of vt leads to another
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algorithm RMSProp [199] (and a more complicated algorithm AdaDelta [229]; for simplicity, we

only discuss RMSProp). More specifically, at the t-th iteration of RMSProp, we randomly pick i

and compute gt = ∇Fi(θt), and then update the second order momentum vt and parameter θt as

vt = βvt−1 + (1− β)gt ◦ gt,

θt+1 = θt − αtv−1/2
t ◦ gt.

(21)

Adam [104] is the combination of RMSProp and the momentum method (i.e. heavy ball

method). At the t-th iteration of RMSProp, we randomly pick i and compute gt = ∇Fi(θt),
and then update the first order momentum mt, the second order momentum vt and parameter θt
as

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)gt ◦ gt,

θt+1 = θt − αtv−1/2
t ◦mt.

(22)

There are a few other related methods in the area, e.g. AdaDelta [229], Nadam [52], and

interested readers can refer to [171] for more details.

Empirical use of adaptive gradient methods. AdaGrad was designed to deal with sparse

and highly unbalanced data. Imagine we form a data matrix with the data samples being the

columns, then in many machine learning applications, most rows are sparse (infrequent features)

and some rows are dense (frequent features). If we use the same learning rate for all coordinates,

then the infrequent coordinates will be updated too slowly compared to frequent coordinates. This

is the motivation to use different learning rates for different coordinates. AdaGrad was later used

in many machine learning tasks with sparse data such as language models where the words have a

wide range of frequencies [141, 163].

Adam is one of the most popular methods for neural network training nowadays 9. After

Adam was proposed, the common conception was that Adam converges faster than vanilla SGD

and SGD with momentum, but generalizes worse. Later, researchers found that (e.g., [211]) well-

tuned SGD and SGD with momentum outperform Adam in both training error and test error.

Thus the advantages of Adam, compared to SGD, are considered to be the relative insensitivity

to hyperparameters and rapid initial progress in training (see, e.g. [101]). Sivaprasad et al. [183]

proposed a metric of “tunability” and verified that Adam is the most tunable for most problems

they tested.

The claim of the “marginal value” of adaptive gradient methods [211] in year 2017 did not stop

the booming of Adam in the coming years. Less tuning is one reason, but we suspect that another

reason is that the simulations done in [211] are limited to image classification, and do not reflect

9The paper that proposed Adam [104] achieved phenomenal success at least in terms of popularity. It was posted

in arxiv on December 2014; by Aug 2019, the number of citations in Google scholar is 26000; by Dec 2019, the number

is 33000. Of course the contribution to optimization area cannot just be judged by the number of citations, but the

attention Adam received is still quite remarkable.
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the real application domains of Adam such as GANs and reinforcement learning. For these tasks,

the generalization ability of Adam might be a less critical issue.

Theoretical results on adaptive gradient methods. Do these adaptive gradient methods

converge? Although Adam is known to be convergent in practice and the original Adam paper

[104] claimed a convergence proof, it was recently found in Reddi et al. [169] that RMSProp and

Adam can be divergent even for solving convex problems (thus there is some error in the proof of

[104]). To fix the divergence issue, [169] proposed AMSGrad, which changes the update of vt in

Adam to the following:

v̄t = β2v̄t−1 + (1− β2)g2
t , vt = max{vt−1, v̄t}.

They also prove the convergence of AMSGrad for convex problems (for diminishing β1). Empirically,

AMSGrad is reported to have somewhat similar (or slightly worse) performance to Adam.

The convergence analysis and iteration complexity analysis of adaptive gradient methods are

established for non-convex optimization problems in a few subsequent works [38, 236, 242, 44, 243,

208]. For example, [38] considers a general Adam-type methods where vt can be any function of

past gradients g1, . . . , gt and establishes a few verifiable conditions that guarantee the convergence

for non-convex problems (with Lipschitz gradient). We refer interested readers to Barakat and

Bianchi [16] which provided a table summarizing the assumptions and conclusions for adaptive

gradient methods. Despite the extensive research, there are still many mysteries about adaptive

gradient methods. For instance, why it works so well in practice is still largely unknown.

5.5 Large-scale distributed computation

An important topic in neural network optimization is how to accelerate training by using multi-

ple machines. This topic is closely related to distributed and parallel computation (for readers

interested in this topic, we recommend the book Bertsekas and Tsitsiklis [24]).

Training ImageNet in 1 hour. Goyal et al. [78] successfully trained ResNet50 (50-layer

ResNet) for the ImageNet dataset in 1 hour using 256 GPUs; in contrast, the original implementa-

tion in He et al. [86] takes 29 hours using 8 GPUs. The scaling efficiency is 29/32 ≈ 0.906, which

is remarkable. Goyal et al. [78] used 8192 samples in one mini-batch, while He et al. [86] only used

256 samples in one mini-batch. Bad generalization was considered to be a major issue for large

mini-batches, but [78] argued that optimization difficulty is the major issue. They used two major

optimization tricks: first, they scale the learning rate with the size of the mini-batches; second,

they use “gradual warmup” strategy that increases the learning rate from η/K gradually to η in

the first 5 epochs, where K is the number of machines.

Training ImageNet in minutes. Following Goyal et al. [78], a number of works [186, 1, 96,

140, 222, 218] have further reduced the total training time by using more machines. For example,

You et al. [223] applied layer-wise adaptive rate scheduling (LARS) to train ImageNet with mini-

batch size 32,000 in 14 minutes. Yamazaki et al. [218] used warmup and LARS, tried many learning

rate decay rules and used label smoothing to train ImageNet in 1.2 minutes by 2048 V100 GPUs,
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with mini-batch size 81920. When training ResNet50 on ImageNet, these works can obtain top-1

test accuracy between 75% to 77%, which is quite close to the single-machine training.

5.6 Other Algorithms

Other learning rate schedules. We have discussed cyclical learning rate and adaptive learn-

ing rate. Adaptive stepsize or tuning-free step-size has been extensively studied in non-linear

optimization area (see, e.g. Yuan [226] for an overview). One of the representative methods is

Barzilai-Borwein (BB) method proposed in year 1988 [19]. Interestingly, in machine learning area,

an algorithm with similar idea to BB method (diagonal approximation of Hessian) was proposed in

the same year 1988 in Becker et al. [20] (and further developed in Bordes et al. [27]). This is not

just a coincidence: it reflects the fact that the problems neural-net researchers have been trying to

solve are very similar to those of non-linear optimizers. LeCun et al. [111] provided a good overview

of the tricks for training SGD, especially step-size tuning based on the Hessian information. Other

recent works on tuning-free SGD include Schaul [176], Tan et al. [194] and Orabona [156].

Second order methods. Second-order methods have also been extensively studied in the

neural network area. Along the line of classical second-order methods, Martens [135] presented

Hessian-free optimization algorithms, which are a class of quasi-Newton methods without explicit

computation of an approximation of the Hessian matrix (thus called “Hessian free”). One of the key

tricks, based on [162, 178], is how to compute Hessian-vector products efficiently by backpropaga-

tion, without computing the full Hessian. Berahas [22] proposed a stochastic quasi-Newton method

for solving neural network problems. Another tye of second order method is the natural gradient

method [6, 136], which scales the gradient by the empirical Fisher information matrix (based on

theory of information geometry [5]). We refer the readers to [136] for a nice interpretation of natural

gradient method and the survey [30] for a detailed introduction. A more efficient version K-FAC,

based on block-diagonal approximation and Kronecker factorization, is proposed in Martens and

Grosse [137].

Very recently, second order methods showed some promise. Osawa et al. [158] has achieved good

test performance on ImageNet using K-FAC (only takes 35 epochs to achieve 75% top-1 accuracy on

ImageNet). Anil et al. [7] proposed an efficient implementation of a second-order method Shampoo

(Shampoo was proposed in Gupta et al. [79]). It showed that when using Transformer network to

solve natural language processing tasks, their method used 40% less wall-clock time compared to

first-order methods.

6 Global Optimization of Neural Networks (GON)

The previous two sections mainly focus on resolving “local issues” of training, and the theoretical

results can at most ensure convergence to local minima. Due to non-convexity of the problem (3),

failure of convergence to global-min has been considered as a major challenge of neural-net training.

Nevertheless, the recent success of neural networks suggest that neural-net optimization is far
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from a worst-case non-convex problem, and finding a global minimum is not a surprise in deep

learning noways. There is a growing list of literature devoted to understanding the global issues

of training. Typical questions include but are not limited to: When can an algorithm converge

to global minima? Are there sub-optimal local minima? What properties do the optimization

landscape have? How to pick an initial point that ensures convergence to global minima?

For simplicity of presentation, we call this subarea “global optimization of neural networks”

(GON) 10. We remark that research in GON was partially reviewed in Vidal et al. [206], but most

of the works we reviewed appear after [206].

6.1 Related areas

Before discussing neural networks, we discuss a few related subareas.

Tractable problems. Understanding the boundary between “tractable” and “intractable”

problems has been one of the major themes of optimization area. The most well-known boundary

is probably between convex and non-convex problems. However, this boundary is vague since it is

also known that many non-convex optimization problems can be reformulated as a convex problem

(e.g. semi-definite programming and geometric programming). We guess that some neural-net

problems are in the class of “tractable” problems, though the meaning of tractability is not clear.

Studying neural networks, in this sense, is not much different in essence from the previous studies

of semi-definite programming (SDP), except that a theoretical framework as complete as SDP has

not been developed yet.

Global optimization. Another related area is “global optimization”, a subarea of optimization

which aims to design and analyze algorithms that find globally optimal solutions. The topics

include global search algorithms for general non-convex problems (e.g. simulated annealing and

evolutionary methods), algorithms designed for specific non-convex problems (possibly discrete;

e.g. [130]), as well as analysis of the structure of specific non-convex problems (e.g. [61]).

Non-convex matrix/tensor factorization. The most related subarea to GON is “non-

convex optimization for matrix/tensor factorization” (see, e.g., Chi et al. [39] for a survey), which

emerged after around year 2009 in machine learning and signal processing areas 11. This subarea

tries to understand why many non-convex matrix/tensor problems can be solved to global minima

easily. Most of these problems can be viewed as the extensions of matrix factorization problem

min
X,Y ∈Rn×r

‖M −XY T ‖2F , (23)

including low-rank matrix completion, phase retrieval, matrix sensing, dictionary learning and

tensor decomposition. The matrix factorization problem (23) is closely related to the eigenvalue

10It is not clear how we should call this subarea. Many researchers use “(provable) non-convex optimization”

to distinguish these research from convex optimization. However, this name may be confused with the studies of

non-convex optimization that focus on the convergence to stationary points. The name “global optimization” might

be confused with research on heuristic methods, while GON is mainly theoretical. Anyhow, let’s call it global

optimization of neural-nets in this article.
11Again, it is not clear how to call this subarea. “Non-convex optimization” might be a bit confusing to optimizers.
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problem. Classical linear algebra textbooks explain the tractability of the (original) eigenvalue

problem by proving directly the convergence of power method, but it cannot easily explain what

happens if a different algorithm is used. In contrast, an optimization explanation is that the

eigenvalue problem can be solved to global optima because every local-min is a global-min. One

central theme of this subarea is to study whether a nice geometrical property still holds for a variant

of (23). This is similar to GON area, which essentially tries to understand the structure of deep

non-linear neural-nets that also can be viewed as a generalized formulation of (23).

6.2 Empirical exploration of landscape

We first discuss some interesting empirical studies on the loss surface of neural networks. The loss

surface is a high-dimensional surface (θ, F (θ)) in RD+1, where D is the total number of parameters,

and is also called “optimization landscape” or “landscape”. Theoretical results will be reviewed in

later subsections.

One of the early papers that caught much attention is Dauphin et al. [43], which showed that

empirically bad local minima are not found and a bigger challenge is plateaus. Goodfellow et al.

[76] plotted the function values along the line segment between the initial point and the converged

point, and found that this 1-dimensional plot is similar to a 1-dimensional convex plot which has

no bumps. These early experiments indicated that the landscape of a neural-net problem is much

nicer than one thought.

A few later works provided various ways to explore the landscape. Poggio and Liao [166] gave

experiments on the visualization of the evolution of SGD. Li et al. [116] provided visualization of

the landscape under different network architecture. In particular, it showed by two-dimensional

visualization that as the width increases, then landscape becomes “smoother”, and adding skip

connection will also smooth the landscape. Baity-Jesi et al. [14] compared the learning dynamics

of neural-nets with glassy systems in statistical physics. Franz et al. [64] and Geiger et al. [70]

studied the analogy between the landscape of neural networks and the jamming transition in physics.

6.2.1 Mode connectivity

An exact characterization of a high-dimensional surface is almost impossible, thus in mathematics,

geometers strive to identify simple yet non-trivial properties (e.g. Gauss’s curvature). In neural-net

area, one geometrical property called “mode connectivity” has been found for deep neural networks.

In particular, Draxler et al. [53] and Garipov et al. [67] independently found that two global minima

can be connected by an (almost) equal-value path. This is an empirical claim, and in practice the

two “global minima” refer to two low-error solutions found by training from two random initial

points. A more general optimization property is “connectivity of sub-level sets”, which was first

proved by [65] for 1-hidden layer linear networks, and further justified in Nguyen [150], Kuditipudi

et al. [107] for multi-layer neural nets.
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6.2.2 Model compression and lottery ticket hypothesis

Another line of research closely related to the landscape is training smaller neural networks (or

called “efficient deep learning”). This line of research has a close relation with GON, and this

relation has been largely ignored by both theoreticians and practitioners.

Network pruning [81] showed that many large networks can be pruned to obtain a much smaller

network while the test accuracy is only dropped little. Nevertheless, in network pruning, the small

network often has to inherit the weights from the solution found by training the large network to

achieve good performance, and training a small network from the scratch often leads to significantly

worse performance 12.

Frankle and Carbin [62] made an interesting finding that in some cases a good initial point is

relatively easy to find. More specifically, for some datasets (e.g. CIFAR10), [62] empirically shows

that a large network contains a small subnetwork and a certain “half-random” initial point such

that the following holds: training the small network from this initial point can achieve performance

similar to the large network. The trainable subnetwork (the architecture and the associated initial

point together) is called a “winning ticket”, since it has won an “initialization lottery”. Lottery

ticket hypothesis (LTH) states that such a winning ticket always exists. Later work [63] shows that

for larger datasets such as ImageNet, the procedure in [62] needs to be modified to find a good

initial point. Zhou et al. [237] further studies the factors that lead to the success of the lottery

tickets (e.g. the signs of the weights are very important). For more discussions on LTH, see Section

3.1 of [145].

The works on network pruning and LTH are mostly empirical, and a clean message is yet to

be stated due to the complication of experiments. It is an interesting challenge to formally state

and theoretically analyze the properties related to model compression and LTH. Tian et al. [198]

made an attempt on a more formal analysis of LTH in one-hidden-layer networks. More theoretical

works along this line are needed.

6.2.3 Generalization and landscape

Landscape has long been considered to be related to the generalization error. A common conjecture

is that flat and wide minima generalize better than sharp minima, with numerical evidence in, e.g.,

Hochreiter and Schmidhuber [88] and Keskar et al. [102]. The intuition is illustrated in Figure 2(a):

the test loss function and the training loss function have a small difference, and that difference has

a small effect on wide minima and thus they generalize well; in constrast, this small difference has

a large effect on sharp minima and thus they do not generalize well. Dinh et al. [51] argues that

sharp minima can also generalize since they can become wide minima after re-parameterization; see

Figure 2(b). How to define “wide” and “sharp” in a rigorous way is still challenging. Neyshabur

et al. [147], Yi et al. [221] defined new metrics for the “flatness” and showed the connection between

12There are some recent pruned networks that can be trained from random initial point [127, 113], but the sparsity

level is not very high; see [63, Appendix A] for discussions.
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generalization error and the new notions of “flatness”. He et al. [84] found that besides wide and

shallow local minima, there are asymmetric minima that the function value changes rapidly along

some direction and slowly along some other directions, and algorithms biased towards the wide side

generalize better.

(a) Wide minima generalize better [102] (b) Sharp minima may become wide

after re-parameterization [51]

Figure 2: Illustration on wide minima and sharp minima.

Although the intuition “wide minima generalize better” is debatable, researchers still borrow

this intuition to design or discuss optimization algorithms. Chaudhari et al. [37] designed entropy-

SGD that explicitly search for wider minima. Smith and Topin [185] also argued that the benefit

of cyclical learning rate is that it can escape shallow local minima

6.3 Optimization Theory for Deep Neural Networks

We discuss two recent threads in optimization theory for deep neural networks: landscape analysis

and algorithmic analysis. The first thread discusses the global landscape properties of the loss

surface, and the second thread mainly analyzes gradient descent for ultra-wide networks.

6.3.1 Global landscape analysis of deep networks

Global landscape analysis is the closest in spirit to the empirical explorations in Section 6.3: un-

derstanding some geometrical properties of the landscape. There are three types of deep neural

networks with positive results so far: linear networks, over-parameterized networks and modified

networks. We will also discuss some negative results.

Deep linear networks. Linear networks have little representation power and are not very

interesting from a learning perspective, but it is a valid problem from optimization perspective.

The landscape of deep linear networks are relatively well understood. Kawaguchi [99] proved that

every local-min is a global-min for a deep linear networks, under very mild conditions. Lu and
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Figure 3: Left figure: the flat region is not a set-wise strict local-min, and this region can be escaped by a (non-strictly)

decreasing algorithm. Right figure: there is a basin that is a set-wise strict local-min.

Kawaguchi [131], Laurent and Brecht [108], Nouiehed and Razaviyayn [152], Zhang [233] proved

the result under relaxed conditions or provided simpler proofs. Yun et al. [227] and Zou et al. [239]

present necessary and sufficient conditions for a stationary point to be a global minimum.

Deep over-parameterized networks. Over-parameterized networks are the simplest non-

linear networks that currently can be analyzed, but already somewhat subtle. It is widely believed

that “more parameters than necessary” can smooth the landscape [128, 148, 230], but these works do

not provide a rigorous result. To obtain rigorous results, one common assumption for deep networks

is that the last layer has more neurons than the number of samples. Under this assumption on the

width of the last layer, Nguyen et al. [151] and Li et al. [115] prove that a fully connected network

has no “spurious valley” or “set-wise strict local minima”, for generic input data. Intuitively, “set-

wise strict local minima” and “spurious valley” are the “bad basin” illustrated in the right figure

of Figure 3 (see [151] or [115] for formal definitions).

The above works can be viewed as the extensions of a classical work [225] on 1-hidden-layer over-

parameterized networks (with sigmoid activations), which claimed to have proved that every local-

min is a global-min. It was pointed out that the proof is not rigorous, and a counter-example was

constructed [115, 50]. Ding et al. [50] further constructs sub-optimal local-min for arbitrarily wide

neural networks for a large class of activations including sigmoid activations, thus under the settings

of [225][151] [115] sub-optimal local minima can exist. This implies that overparameterization

cannot eliminate bad local minima, but only eliminate bad basins (or spurious valleys) without

extra assumptions or modifications.

Intuitively, over-parameterized networks are prone to over-fitting, but many practical networks

are indeed over-parameterized and understanding why over-fitting does not happen is an interesting

line of research [148, 18, 209, 213, 21, 138]. In this article, we mainly discuss the research on the

optimization side.

Modified problems. The results discussed so far mainly study the original neural network

problem (3), and the landscape is different if the problem is slightly changed. Liang et al. [121]

considered modified neuron activation and an extra regularizer for an arbitrary deep neural-net,

for binary classification problems, and prove that no bad local-min exists. Kawaguchi et al. [100]

extends the result of [121] to multi-class classification problems. In addition, [100] provides toy

examples to illustrate the limitation of only considering local minima: GD may diverge for the

modified problem. It is a possible weakness of any result on “no bad local-min” including the
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classical works on deep linear networks. In fact, as discussed in Section 3.2, the possibility of

divergence (U2) is one of the two undesirable situations that classical results on GD does not

exclude, and eliminating bad local-min does not rule out the possibility of (U2). Liang et al. [123]

showed that for a deep CNN with certain activation function, adding a regularizer can ensure there

is no sub-optimal local-min and no decreasing path to infinity, thus eliminating (U2).

Negative results. Most of the works in GON area after 2012 are positive results. However,

while neural-nets can be trained in some cases with careful choices of architecture, initial points

and parameters, there are still many cases that neural-nets cannot be successfully trained. Shalev

et al. [179] explained a few possible reasons of failure of GD for training neural networks. There

are a number of recent works focusing the existence of bad local minima (here “bad” means “sub-

optimal”).

These negative results differ by their assumptions on activation functions, data distribution

and network structure. As for the activation functions, many works showed that ReLU networks

have bad local minima (e.g., Swirszcz et al.[192] Zhou et al. [238], Safran et al.[172], Venturi et

al.[205], Liang et al.[122]), and a few works Liang et al. [122], Yun et al.[228] and Ding et al.

[50] construct examples for smooth activations. As for the loss function, Safran and Shamir [172]

and Venturi et al. [205] analyze the population risk (expected loss) and other works analyze the

empirical risk (finite sum loss). As for the data distribution, most works consider data points that

lie in a zero-measure space or satisfy special requirements like linear separability (Liang et al. [122])

and Gaussian (Safran et al.[172]), and few works consider generic input data (e.g. Ding et al. [50]).

We refer the readers to Ding et al. [50] which compared various examples of bad local-min in a

table.

6.3.2 Algorithmic analysis of deep networks

A good landscape may explain the nice properties of the optimization formulation, but does not

fully explain the behavior of specific algorithms. To understand specific algorithms, convergence

analysis is more desirable. However, for a general neural-net the convergence analysis is extremely

difficult, thus some assumptions have to be made. The current local (algorithmic) analysis of

deep neural-nets is mainly performed for two types: linear networks [175, 17, 9, 95] and ultra-wide

networks.

Linear networks. Arora et al. [9] considered the problem minW1,...,WL
‖W1W2 . . .WL − Φ‖2F ,

and prove that if the initial weights are “balanced” and the initial product W1 . . .WL is close to

Φ, GD with a small stepsize converges to global minima in polynomial time. Ji and Telgarsky [95]

assume linearly separable data and prove that if the initial objective value is less than a certain

threshold, then GD with small adaptive stepsize converges asymptotically to global minima.

Neural Tangent Kernel (NTK) and linearization. Consider the neural-network problem

with quadratic loss minθ
∑n

i=1
1
2(fθ(xi) − yi)

2, where xi ∈ Rd, yi ∈ R (it can be generalized to
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multi-dimensional output and non-quadratic loss). The gradient descent dynamics is

dθ

dt
= −

∑
i

∂fθ(xi)

∂θ
(fθ(xi)− yi). (24)

Define G = (∂fθ(x1)
∂θ , . . . , ∂fθ(xn)

∂θ ) ∈ RP×n where P is the number of parameters, and define neural

tangent kernel K = GTG. Let r = (fθ(x1) − y1; . . . ; fθ(xn) − yn), then dri
dt = ∂fθ(xi)

∂θ

∑
j
∂fθ(xj)
∂θ rj ,

or equivalently,
dr

dt
= −K(t)r, (25)

When fθ(x) = θTx, the matrix K(t) reduces to a constant matrix XTX, thus (25) reduces to
dr(t)
dt = −XTXr(t).

Jacot et al. [91] proved that K(t) is a constant matrix for any t under certain conditions. More

specifically, if the initial weights are i.i.d. Gaussian with certain variance, then as the number

of neurons at each layer goes to infinity sequentially, K(t) converges to a constant matrix Kc

(uniformly for all t ∈ [0, T ] where T is a given constant). Under further assumptions on the

activations (non-polynomial activations) and data (distinct data from the unit sphere), [91] proves

that Kc is positive definite. One interesting part of [91] is that the limiting NTK matrix Kc has

a closed form expression, computed recursively by an analytical formula. Du et al. [56] has also

analyzed the same kernel for an ultra-wide neural networks.

Yang [220] and Novak et al. [153] extended [91]: they only require the width of each layer goes

to infinitely simultaneuously (instead of sequentially in [91]), and provides a formula of NTK for

convolutional networks, called CNTK.

Finite-width Ultra-wide networks. Around the same time as [91], Allen-Zhu et al. [4] and

Zou et al. [241] and Du et al. [56] analyzed deep ultra-wide non-linear networks and prove that

with Gaussian initialization and small enough step-size, GD and/or SGD converge to global minima

(these works can be viewed extensions of an analysis of a 1-hidden-layer networks [118, 56]). In

contrast to the landscape results [115, 151] that only require one layer to have n neurons, these works

require a much larger number of neurons per layer: O(n24L12/δ8) in [4] where δ = mini 6=j ‖xi−xj‖
and O(n4/λmin(K)4) in [56] where K is a complicated matrix defined recursively. Arora et al. [10]

also analyzed finite-width networks, by proving a non-asymptotic version of the NTK result of [91].

Zhang et al. [232], Ma et al. [134] analyzed the convergence of over-parameterized ResNet.

NTK as a computation tool. The explicit formula of the limiting NTK makes it possible to

actually compute NTK and perform kernel gradient descent for a real-world problem, which provides

an alternative to standard neural-nets. As computing the CNTK directly is time consuming,

Novak et al. [153] used Monte Carlo sampling to approximately compute CNTK. Arora et al. [10]

proposed an exact efficient algorithm to compute CNTK and tests it on CIFAR10, achieving 77%

test accuracy for CNTK with global average pooling. Li et al. [120] utilized two further tricks to

achieve 89% test accuracy on CIFAR10, on par with AlexNet. Arora et al. [11] showed that NTK

can perform better than standard neural-nets on small-scale datasets. Novak et al. [154] built a
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python library called “neural tangents” that makes NTK more accessible. These works showed

that a theoretically-derived tool can lead to computational advances, at least in certain tasks.

Linearized networks as a computation tool. Another computational tool suggested by

NTK is to directly use the linearized network flin(θ) = f(θ0) + 〈θ,∇f(θ0)〉 as a replacement of

the original neural-net. Even if the width is finite, one could always use such a linearized neural-

net to perform computation. An immediate question is whether this linearized network performs

well in practice. Lee et al. [112] showed that a linearized network can achieve somewhat similar

performance as a standard neural-net when using a quadratic loss, thus providing partial validation

to this approach. More study is needed to understand whether linearized networks can be practically

useful in certain cases.

Mean-field approximation: another group of works. There are another group of works

which also studied infinite-width limit of SGD. Sirignano and Spiliopoulos [182] considered discrete-

time SGD for infinite-width multi-layer neural networks, and showed that the limit of the neural

network output satisfies a certain differential equation. Araujo et al. [8], Nguyen [149] also studied

infinite-width multi-layer networks. These works are extensions of previous works Mei et al. [139],

Srignanao and Spiliopoulos [181] and Rotskoff and Vanden-Eijnden [170], which analyzed 1-hidden-

layer networks. A major difference between these works and [91] [4] [241] [56] is the scaling factor;

for instance, Sirignano and Spiliopoulos [181] considered the scaling factor 1/fan-in, while [91]

[4] [241] [56] considered the scaling factor 1/
√

fan-in. The latter scaling factor of 1/
√

fan-in is

used in Bottou initialization (corresponding to variance 1/fan-in), thus closer to practice, but they

imply that the parameters move very little as the number of parameters increase. In contrast,

[139, 181, 170, 182, 8, 149] show that the parameters evolve according to a PDE and thus can move

far away from the initial point.

“Lazy training” and two learning schemes. The high-level idea of [91] [4] [241] [56] is

termed “lazy training” by [40]: the model behaves like its linearization around its initial point.

Because of the huge number of parameters, each parameter only needs to move a tiny amount,

thus linearization is a good approximation. However, practical networks are not ultra-wide, thus

the parameters will move a reasonably large amount of distance, and likely to move out of the

linearization regimes. [40] indeed showed that the behavior of SGD in practical neural-nets is

different from lazy training. Note that [112] made an opposite claim that wide neural-nets behave

similarly to its linearization. We suspect that this difference is because [112] is using a quadratic

loss for a classification problem, while [40] uses the standard cross-entropy loss for the classification

problem. [40] also pointed out that “lazy training” is mainly due to implicit choice of the scaling

factor, and applies to a large class of models beyond neural networks. A natural question is whether

the “adaptive learning scheme” described by [139, 181, 170, 182, 8, 149] can partially characterize

the behavior of SGD. In an effort to answer this question, Williams et al. [210] analyzed a 1-

hidden-layer ReLU network with 1-dimensional input, and provided conditions for the “kernel

learning scheme” and “adaptive learning scheme”.
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6.4 Research in Shallow Networks after 2012

For the ease of presentation, results for shallow networks are mainly reviewed in this subsection.

Due to the large amount of literature in GON area, it is hard to review all recent works, and we can

only give an incomplete overview. We group these works based on the following criteria: landscape

or algorithmic analysis (first-level classification criterion); one-neuron, 2-layer network or 1-hidden-

layer network 13 (second-level criterion). Note that among the works in the same class, they may

differ on the assumption on input data (Gaussian input and linearly separable input are common),

number of neurons, loss function and specific algorithms (GD, SGD or others). This section focuses

on positive results, and negative results for shallow networks are discussed in Section 6.3.1.

Global landscape of 1-hidden-layer neural-nets. There have been many works on the

landscape of 1-hidden-layer neural-nets. One interesting work (mentioned earlier when discussing

mode connectivity) is Freeman and Bruna [65] which proved that the sub-level set is connected

for deep linear networks and 1-hidden-layer ultra-wide ReLU networks. This does not imply every

local-min is global-min, but implies there is no spurious valley (and no bad strict local-min). A

related recent work is Venturi et al. [204] which proved no spurious valley exists (implying no bad

basin) for 1-hidden-layer network with “low intrinsic dimension”. Haeffele and Vidal [80] extended

the classical work of Burer and Monteiro [33] to 1-hidden-layer neural-net, and proved that a subset

of the local minima are global minima, for a set of positive homogeneous activations. Ge et al. [68]

and Gao et al. [66] designed a new loss function so that all local minima are global minima. Feizi et

al. [60] designed a special network for which almost all local minima are global minima. Panigrahy

et al. [161] analyzed local minima for many special neurons via electrodynamics theory. For

quadratic activations, Soltanolkotabi et al. [187] proved that 2-layer over-parameterized network

with width no less than O(
√
n) have no bad local-min for almost all input data, and Liang et al.

[122] provided a sufficient and necessary condition for the data distribution so that 1-hidden-layer

neural-net has no bad local-min (no matter what the width is). For 1-hidden-layer ReLU networks

(without bias term), Soudry and Hoffer [188] proved that the number of differentiable local minima

is very small. Nevertheless, Laurent and von Brecht [109] showed that except flat bad local minima,

all local minima of 1-hidden-layer ReLU networks (with bias term) are non-differentiable. Liang et

al. [122] proved that for linearly separable data, a 1-hidden-layer net with smooth strictly increasing

neurons has no bad local-min.

Algorithmic analysis of 2-layer neural-nets. There are many works on the algorithmic

analysis of SGD for shallow networks under a variety of settings. The first class analyzed SGD

for 2-layer neural-networks (with the second layer weights fixed). A few works mainly analyzed

one single neuron. Tian [197] and Soltanolkotabi [187] analyzed the performance of GD for a

single ReLU neuron. Mei et al. [139] analyzed a single sigmoid neuron. Other works analyzed

2-layer networks with multiple neurons. Brutzkus and Globerson [32] analyzed a non-overlapping

2-layer ReLU network and proved that the problem is NP-complete for general input, but if the

13In this section, we will use “2-layer network” to denote a network like y = φ(Wx+ b) or y = V ∗φ(Wx+ b) with

fixed V ∗, and use “1-hidden-layer network” to denote a network like y = V φ(Wx + b1) + b2 with both V and W

being variables.
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input is Gaussian then GD converges to global minima in polynomial time. Zhong et al. [235]

analyzed 2-layer under-parameterized network (no more than d neurons) for Gaussian input and

initialization by tensor method. Li et al. [119] analyzed 2-layer network with skip connection for

Gaussian input. Brutzkus et al. [31] analyzed 2-layer over-parameterized network with leaky ReLU

activation for linearly seperable data. Wang et al. [207] and Zhang et al. [234] analyzed 2-layer

over-parameterized network with ReLU activation, for linearly separable input and Gaussian input

respectively. Du et al. [54] analyzed 2-layer over-parameterized network with quadratic neuron

for Gaussian input. Oymak and Soltanolkotabi [160] proved the global convergence of GD with

random initialization for a 2-layer network with a few types of neuron activations, when the number

of parameters exceed O(n2) (O(·) here hides condition number and other parameters). Su and Yang

[191] analyzed GD for 2-layer ReLU network with O(n) neurons for generic input data.

Algorithmic analysis of 1-hidden-layer neural-nets. The second class analyzed 1-hidden-

layer neural-network (with the second layer weights trainable). The relation of 1-hidden-layer

network and tensors is explored in [94, 144]. Boob and Lan [26] analyzed a specially designed

alternating minimization method for over-parameterized 1-hidden-layer neural-net. Du et al. [55]

analyzed an non-overlapping network for Gaussian input and with an extra normalization, and

proved that SGD can converge to global-min for some initialization and converge to bad local-

min for other initialization. Vempala and Wilmes [203] proved that for random initialization and

with nO(k) neurons, GD converges to the best degree k polynomial approximation of the target

function; a matching lower bound is also proved. Ge et al. [69] analyzed a new spectral method for

learning 1-hidden-layer network. Oymak and Soltanolkotabi [159] analyzed GD for a rather general

problem and applied it to 1-hidden-layer neural-net where n ≤ d (number of samples no more than

dimension) for any number of neurons.

7 Concluding Remarks

In this article, we have reviewed existing theoretical results related to neural network optimization,

mainly focusing on the training of feedforward neural networks. The goal of theory in general is

two-fold: understanding and design. As for understanding, now we have a good understanding

on the effect of initialization on stable training, and some understanding on the effect of over-

parameterization on the landscape. As for design, theory has already greatly helped the design

of algorithms (e.g. initialization schemes, batch normalization, Adam). There are also examples

like CNTK that is motivated from theoretical analysis and has become a real tool. Besides design

and understanding, some interesting empirical phenomenons have been discovered, such as mode

connectivity and lottery ticket hypothesis, awaiting more theoretical studies. Overall, there is quite

some progress in the theory for neural-net optimization.

That being said, there are still lots of challenges. We still do not understand many of the

components that affect the practical performance of neural networks, e.g., the neural architecture

and Adam optimizer. As a result, there are many problems beyond image classification that

cannot be solved well by neural networks, yet it is unclear whether the optimization part has been
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done properly. Bringing theory closer to practice is still a huge challenge for both theoretical and

empirical researchers. One of the biggest doubts on this area may be how far the theory can go.

Have we already hit the glass ceiling that theory can barely provide more guidance? It is hard to

say, and more time is needed. In the history of linear programming, after the invention of simplex

method in 1950’s, for 20 years it is also not clear whether a polynomial time algorithm exists for

solving LP, until the ellipsoid method was proposed; and it took another 10 years for a method that

is both practical and theoretically strong (interior point method) to appear. Maybe it just takes

another decade or more decades to see a rather complete theory for neural network optimization.
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A Review of Large-scale (Convex) Optimization Methods

In this subsection, we review several methods in large-scale optimization that are closely related to

deep learning.

Since the neural network optimization problem is often of huge size (at least millions of opti-

mization variables and millions of samples), a method that directly inverts a matrix in an iteration,

such as Newton method, is often considered impractical. Thus we will focus on first-order meth-

ods, i.e., iterative algorithms that mainly use gradient information (though we will briefly discuss

quasi-Newton methods).

To unify these methods in one framework, we start with the common convergence rate results of

gradient descent method (GD) and explain how different methods improve the convergence rate in

different ways. Consider the prototype convergence rate result in convex optimization: the epoch-

complexity 14 is O(κ log 1/ε) or O(β/ε). These rates mean the following: to achieve ε error, the

number of epochs to achieve error ε is no more than κ log 1/ε for strongly convex problems (or

β/ε for convex problems), where κ is the condition number of the problem (and β is the maximal

Lipschitz constant of all gradients).

There are at least four classes of methods that can improve the convergence rate O(κ log 1/ε)

14For batch GD, one epoch is one iteration. For SGD, one epoch consists of multiple stochastic gradient steps that

pass all data points once. We do not say“iteration complexity” or “the number of iterations” since per-iteration cost

for the vanilla gradient descent and SGD are different and can easily cause confusion. In contrast, the per-epoch cost

(number of operations) for batch GD and SGD are comparable.
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for strongly convex quadratic problems 15.

The first class of methods are based on decomposition, i.e. decomposing a large problem

into smaller ones. Typical methods including SGD and coordinate descent (CD). The theoretical

benefit is relatively well understood for CD, and somewhat well understood for SGD type methods.

A simple argument of the benefit [30] is the following: if all training samples are the same, then

the gradient for one sample is proportional to the gradient for all samples, thus one iteration of

SGD gives the same update as one iteration of GD; since one iteration of GD takes n-times more

computation cost than one iteration of SGD, thus GD is n times slower than SGD. Below we

discuss more precise convergence rate results that illustrate the benefit of CD and SGD. For an

unconstrained n-dimensional convex quadratic problem with all diagonal entries being 1 16:

• Randomized CD has an epoch-complexity O(κCD log 1/ε) [114, 146], where κCD is the ratio

of the average eigenvalue λavg over the minimum eigenvalue λmin of the coefficient matrix.

This is smaller than O(κCD log 1/ε) by a factor of λmax/λavg where λmax is the maximum

eigenvalue. Clearly, the improvement ratio λmax/λavg lies in [1, n], thus randomized CD is 1

to n times faster than GD.

• For SGD type methods, very similar acceleration can be proved. Recent variants of SGD

(such as SVRG [97] and SAGA [46]) achieve the same convergence rate as R-CD for the

equal-diagonal quadratic problems (though not pointed out in the literature), and are also

1 to n times faster than GD. We highlight that this up-to-n-factor acceleration has been

the major focus of recent studies of SGD type methods, and has achieved much attention in

theoretical machine learning area.

• Classical theory of vanilla SGD [30] often uses diminishing stepsize and thus does not enjoy

the same benefit as SVRG and SAGA; however, as mentioned before, constant step-size SGD

works quite well in many machine learning problems, and in these problems SGD may have

inherited the same advantage of SVRG and SAGA.

The second class of methods are fast gradient methods (FGM) that have convergence rate

O(
√
κ log 1/ε), thus saving a factor of

√
κ compared to the convergence rate of GD O(κ log 1/ε).

FGM includes conjugate gradient method, heavy ball method and accelerated gradient method.

For quadratic problems, these three methods all achieve the improved rate O(
√
κ log 1/ε). For

general strongly convex problems, only accelerated gradient method is known to achieve the rate

O(
√
κ log 1/ε).

The third class of methods utilize the second order information of the problem, including quasi-

Newton method and Barzilai-Borwein method. Quasi-Newton methods such as BFGS and limited

BFGS (see, e.g., [212]) use an approximation of the Hessian in each epoch, and are popular choices

15Note that the methods discussed below also improve the rate for convex problems but we skip the discussions
16The results for general convex problems are also established, but we discuss a simple case for the ease of presen-

tation. Here we assume the dimension and the number of samples are both n, and a refined analysis can show the

dependence on the two parameters.
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for many nonlinear optimization problems. Barzilai-Borwein (BB) method uses a diagonal matrix

estimation of the Hessian, and can also be viewed as GD with a special stepsize that approximates

the curvature of the problem. It seems very difficult to theoretically justify the advantage of

these methods over GD, but intuitively, the convergence speed of these methods rely much less

on the condition number κ (or any variant of the condition number such as κCD). A rigorous

time complexity analysis of any method in this class, even for unconstrained quadratic problems,

remains largely open.

The fourth class of methods are parallel computation methods, which can be combined with

aforementioned three classes of ingredients. As discussed in the classical book [24], GD is a special

case of Jacobi method which is naturally parallelizable, and CD is a Gauss-Seidel type method

which may require some extra trick to parallize. For example, for minimizing a n-dimensional least

square problem, each epoch of GD mainly requires a matrix-vector product which is parallelizable.

More specifically, while a serial model takes O(n2) time steps to perform a matrix-vector product,

a parallel model can take as small as O(log n) operations. For CD or SGD, each iteration consists

of one or a few vector-vector products, and each vector-vector product is parallelizable. Multiple

iterations in one epoch of CD or SGD may not be parallellizable in the worst case (e.g. a dense coef-

ficient matrix), but when the problem exhibits some sparsity (e.g. the coefficient matrix is sparse),

they can be partially parallelizable. The above discussion seems to show that “batch” methods

such as GD might be faster than CD or SGD in a parallel setting; however, it is an over-simplified

discussion, and many other factors such as synchronization cost and the communication burden

can greatly affect the performance. In general, parallel computation in numerical optimization is

quite complicated, which is why the whole book [24] is devoted to this topic.

We briefly summarize the benefits of these methods as below. For minimizing n-dimensional

quadratic functions (with equal diagonal entries), the benchmark GD takes time O(n2κ log 1/ε) to

achieve error ε. The first class (e.g. accelerated gradient method) improves it to O(n2√κ log 1/ε),

the second class (e.g. CD and SVRG) improves it to O(n2κCD log 1/ε), the third class (e.g. BFGS

and BB) may improve κ to some other unknown parameter, and the fourth class (parallel com-

putation) can potentially improve it to O(κ log n log 1/ε) with extra cost such as communication.

Although we treat these methods as separate classes, researchers have extensively studied various

mixed methods of two or more classes, though the theoretical analysis can be much harder. Even

just for quadratic problems, the theoretical analysis cannot fully predict the practical behavior

of these algorithms or their mixtures, but these results provide quite useful understanding. For

general convex and non-convex problems, some part of the above theoretical analysis can still hold,

but there are still many unknown questions.
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