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k-means clustering
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in
which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This
results in a partitioning of the data space into Voronoi cells. It is popular for cluster analysis in data mining. k-means clustering minimizes within-
cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean
optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found
using k-medians and k-medoids.

The problem is computationally difficult (NP-hard); however, efficient heuristic algorithms converge quickly to a local optimum. These are usually
similar to the expectation-maximization algorithm for mixtures of Gaussian distributions via an iterative refinement approach employed by both k-
means and Gaussian mixture modeling. They both use cluster centers to model the data; however, k-means clustering tends to find clusters of
comparable spatial extent, while the expectation-maximization mechanism allows clusters to have different shapes.

The algorithm has a loose relationship to the k-nearest neighbor classifier, a popular machine learning technique for classification that is often
confused with k-means due to the name. Applying the 1-nearest neighbor classifier to the cluster centers obtained by k-means classifies new data into
the existing clusters. This is known as nearest centroid classifier or Rocchio algorithm.
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Given a set of observations (x1, x2, ..., xn), where each observation is a d-dimensional real vector, k-means clustering aims to partition the n
observations into k (≤ n) sets S = {S1, S2, ..., Sk} so as to minimize the within-cluster sum of squares (WCSS) (i.e. variance). Formally, the objective is
to find:

where μi is the mean of points in Si. This is equivalent to minimizing the pairwise squared deviations of points in the same cluster:

Contents

Description

https://en.wikipedia.org/wiki/Vector_quantization
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Cluster_(statistics)
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Centroid
https://en.wikipedia.org/wiki/Voronoi_cell
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Squared_Euclidean_distance
https://en.wikipedia.org/wiki/Weber_problem
https://en.wikipedia.org/wiki/Geometric_median
https://en.wikipedia.org/wiki/K-medians_clustering
https://en.wikipedia.org/wiki/K-medoids
https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/Heuristic_algorithm
https://en.wikipedia.org/wiki/Local_optimum
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/Mixture_model
https://en.wikipedia.org/wiki/Gaussian_distribution
https://en.wikipedia.org/wiki/K-nearest_neighbor
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Nearest_centroid_classifier
https://en.wikipedia.org/wiki/Rocchio_algorithm
https://en.wikipedia.org/wiki/Variance


9/16/2020 k-means clustering - Wikipedia

https://en.wikipedia.org/wiki/K-means_clustering 2/9

Convergence of k-means

The equivalence can be deduced from identity . Because the total variance is constant, this is equivalent to

maximizing the sum of squared deviations between points in different clusters (between-cluster sum of squares, BCSS),[1] which follows from the law
of total variance.

The term "k-means" was first used by James MacQueen in 1967,[2] though the idea goes back to Hugo Steinhaus in 1956.[3] The standard algorithm
was first proposed by Stuart Lloyd of Bell Labs in 1957 as a technique for pulse-code modulation, though it wasn't published as a journal article until
1982.[4] In 1965, Edward W. Forgy published essentially the same method, which is why it is sometimes referred to as Lloyd-Forgy.[5]

The most common algorithm uses an iterative refinement technique. Due to its ubiquity, it is often called "the k-
means algorithm"; it is also referred to as Lloyd's algorithm, particularly in the computer science community. It is
sometimes also referred to as "naive k-means", because there exist much faster alternatives.[6]

Given an initial set of k means m1
(1),...,mk

(1) (see below), the algorithm proceeds by alternating between two
steps:[7]

Assignment step: Assign each observation to the cluster with the nearest mean: that with the least
squared Euclidean distance.[8] (Mathematically, this means partitioning the observations according to the
Voronoi diagram generated by the means.)

where each  is assigned to exactly one , even if it could be assigned to two or more of them.

Update step: Recalculate means (centroids) for observations assigned to each cluster.

The algorithm has converged when the assignments no longer change. The algorithm does not guarantee to find the optimum.[9]

The algorithm is often presented as assigning objects to the nearest cluster by distance. Using a different distance function other than (squared)
Euclidean distance may stop the algorithm from converging. Various modifications of k-means such as spherical k-means and k-medoids have been
proposed to allow using other distance measures.

Commonly used initialization methods are Forgy and Random Partition.[10] The Forgy method randomly chooses k observations from the dataset and
uses these as the initial means. The Random Partition method first randomly assigns a cluster to each observation and then proceeds to the update
step, thus computing the initial mean to be the centroid of the cluster's randomly assigned points. The Forgy method tends to spread the initial means
out, while Random Partition places all of them close to the center of the data set. According to Hamerly et al.,[10] the Random Partition method is
generally preferable for algorithms such as the k-harmonic means and fuzzy k-means. For expectation maximization and standard k-means
algorithms, the Forgy method of initialization is preferable. A comprehensive study by Celebi et al.,[11] however, found that popular initialization
methods such as Forgy, Random Partition, and Maximin often perform poorly, whereas Bradley and Fayyad's approach[12] performs "consistently" in
"the best group" and k-means++ performs "generally well".

Demonstration of the standard algorithm
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1. k initial "means" (in
this case k=3) are
randomly generated
within the data domain
(shown in color).

 

2. k clusters are created
by associating every
observation with the
nearest mean. The
partitions here represent
the Voronoi diagram
generated by the means.

 

3. The centroid of each
of the k clusters
becomes the new mean.

 

4. Steps 2 and 3 are
repeated until
convergence has been
reached.

The algorithm does not guarantee convergence to the global optimum. The result may depend on the initial clusters. As the algorithm is usually fast, it
is common to run it multiple times with different starting conditions. However, worst-case performance can be slow: in particular certain point sets,
even in two dimensions, converge in exponential time, that is 2Ω(n).[13] These point sets do not seem to arise in practice: this is corroborated by the
fact that the smoothed running time of k-means is polynomial.[14]

The "assignment" step is referred to as the "expectation step", while the "update step" is a maximization step, making this algorithm a variant of the
generalized expectation-maximization algorithm.

Finding the optimal solution to the k-means clustering problem for observations in d dimensions is:

NP-hard in general Euclidean space (of d dimensions) even for two clusters,[15][16][17][18]

NP-hard for a general number of clusters k even in the plane,[19]

if k and d (the dimension) are fixed, the problem can be exactly solved in time , where n is the number of entities to be clustered.[20]

Thus, a variety of heuristic algorithms such as Lloyd's algorithm given above are generally used.

The running time of Lloyd's algorithm (and most variants) is ,[9][21] where:

n is the number of d-dimensional vectors (to be clustered)
k the number of clusters
i the number of iterations needed until convergence.

On data that does have a clustering structure, the number of iterations until convergence is often small, and results only improve slightly after the
first dozen iterations. Lloyd's algorithm is therefore often considered to be of "linear" complexity in practice, although it is in the worst case
superpolynomial when performed until convergence.[22]

In the worst-case, Lloyd's algorithm needs  iterations, so that the worst-case complexity of Lloyd's algorithm is superpolynomial.[22]

Lloyd's k-means algorithm has polynomial smoothed running time. It is shown that[14] for arbitrary set of n points in , if each point is
independently perturbed by a normal distribution with mean 0 and variance , then the expected running time of k-means algorithm is bounded
by , which is a polynomial in n, k, d and .

Better bounds are proven for simple cases. For example, it is shown that the running time of k-means algorithm is bounded by  for n
points in an integer lattice .[23]

Lloyd's algorithm is the standard approach for this problem. However, it spends a lot of processing time computing the distances between each of the
k cluster centers and the n data points. Since points usually stay in the same clusters after a few iterations, much of this work is unnecessary, making
the naive implementation very inefficient. Some implementations use caching and the triangle inequality in order to create bounds and accelerate
Lloyd's algorithm.[9][24][25][26][27]

Jenks natural breaks optimization: k-means applied to univariate data
k-medians clustering uses the median in each dimension instead of the mean, and this way minimizes  norm (Taxicab geometry).
k-medoids (also: Partitioning Around Medoids, PAM) uses the medoid instead of the mean, and this way minimizes the sum of distances for
arbitrary distance functions.
Fuzzy C-Means Clustering is a soft version of k-means, where each data point has a fuzzy degree of belonging to each cluster.
Gaussian mixture models trained with expectation-maximization algorithm (EM algorithm) maintains probabilistic assignments to clusters, instead
of deterministic assignments, and multivariate Gaussian distributions instead of means.
k-means++ chooses initial centers in a way that gives a provable upper bound on the WCSS objective.

Complexity
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The filtering algorithm uses kd-trees to speed up each k-means step.[28]

Some methods attempt to speed up each k-means step using the triangle inequality.[24][25][26][29][27]

Escape local optima by swapping points between clusters.[9]

The Spherical k-means clustering algorithm is suitable for textual data.[30]

Hierarchical variants such as Bisecting k-means,[31] X-means clustering[32] and G-means clustering[33] repeatedly split clusters to build a
hierarchy, and can also try to automatically determine the optimal number of clusters in a dataset.
Internal cluster evaluation measures such as cluster silhouette can be helpful at determining the number of clusters.
Minkowski weighted k-means automatically calculates cluster specific feature weights, supporting the intuitive idea that a feature may have
different degrees of relevance at different features.[34] These weights can also be used to re-scale a given data set, increasing the likelihood of a
cluster validity index to be optimized at the expected number of clusters.[35]

Mini-batch k-means: k-means variation using "mini batch" samples for data sets that do not fit into memory.[36]

Hartigan and Wong's method[9] provides a variation of k-means algorithm which progresses towards a local minimum of the minimum sum-of-
squares problem with different solution updates. The method is a local search that iteratively attempts to relocate a sample into a different cluster as
long as this process improves the objective function. When no sample can be relocated into a different cluster with an improvement of the objective,
the method stops (in a local minimum). In a similar way as the classical k-means, the approach remains a heuristic since it does not necessarily
guarantee that the final solution is globally optimum.

Let  be the individual cost of  defined by , with  the center of the cluster.

Assignment step: Hartigan and Wong's method starts by partitioning the points into random clusters .

Update step: Next it determines the  and  for which the following function reaches a maximum

For the  that reach this minimum,  moves from the cluster  to the cluster .

Termination: The algorithm terminates once  is larger than zero for all .

Different move acceptance strategies can be used. In a first-improvement strategy, any improving relocation can be applied, whereas in a best-
improvement strategy, all possible relocations are iteratively tested and only the best is applied at each iteration. The former approach favors speed,
whether the latter approach generally favors solution quality at the expense of additional computational time. The function  used to calculate the
result of a relocation can also be efficiently evaluated by using equality[37]

The classical k-means algorithm and its variations are known to only converge to local minima of the minimum-sum-of-squares clustering problem
defined as

Many studies have attempted to improve the convergence behavior of the algorithm and maximize the chances of attaining the global optimum (or at
least, local minima of better quality). Initialization and restart techniques discussed in the previous sections are one alternative to find better
solutions. More recently, mathematical programming algorithms based on branch-and-bound and column generation have produced ‘’provenly
optimal’’ solutions for datasets with up to 2,300 entities.[38] As expected, due to the NP-hardness of the subjacent optimization problem, the
computational time of optimal algorithms for K-means quickly increases beyond this size. Optimal solutions for small- and medium-scale still remain
valuable as a benchmark tool, to evaluate the quality of other heuristics. To find high-quality local minima within a controlled computational time but
without optimality guarantees, other works have explored metaheuristics and other global optimization techniques, e.g., based on incremental
approaches and convex optimization[39], random swaps[40] (i.e., iterated local search), variable neighborhood search[41]and genetic
algorithms[42][43]. It is indeed known that finding better local minima of the minimum sum-of-squares clustering problem can make the difference
between failure and success to recover cluster structures in feature spaces of high dimension.[43]

Three key features of k-means that make it efficient are often regarded as its biggest drawbacks:

Euclidean distance is used as a metric and variance is used as a measure of cluster scatter.
The number of clusters k is an input parameter: an inappropriate choice of k may yield poor results. That is why, when performing k-means, it is
important to run diagnostic checks for determining the number of clusters in the data set.

Hartigan–Wong method

Global optimization and metaheuristics

Discussion
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A typical example of the k-means convergence to a local minimum. In this example, the result of k-means
clustering (the right figure) contradicts the obvious cluster structure of the data set. The small circles are the
data points, the four ray stars are the centroids (means). The initial configuration is on the left figure. The
algorithm converges after five iterations presented on the figures, from the left to the right. The illustration
was prepared with the Mirkes Java applet.[44]

k-means clustering result for the Iris flower data set and actual species
visualized using ELKI. Cluster means are marked using larger, semi-
transparent symbols.

k-means clustering vs. EM clustering on an artificial dataset ("mouse"). The
tendency of k-means to produce equal-sized clusters leads to bad results
here, while EM benefits from the Gaussian distributions with different radius
present in the data set.

Two-channel (for illustration
purposes -- red and green
channels only) color image.

Convergence to a local minimum may produce
counterintuitive ("wrong") results (see example in
Fig.).

A key limitation of k-means is its cluster model. The
concept is based on spherical clusters that are
separable so that the mean converges towards the
cluster center. The clusters are expected to be of
similar size, so that the assignment to the nearest
cluster center is the correct assignment. When for
example applying k-means with a value of 
onto the well-known Iris flower data set, the result
often fails to separate the three Iris species contained in the data set. With ,
the two visible clusters (one containing two species) will be discovered, whereas
with  one of the two clusters will be split into two even parts. In fact, 
is more appropriate for this data set, despite the data set's containing 3 classes.
As with any other clustering algorithm, the k-means result makes assumptions
that the data satisfy certain criteria. It works well on some data sets, and fails on
others.

The result of k-means can be seen as the Voronoi cells of the cluster means. Since
data is split halfway between cluster means, this can lead to suboptimal splits as
can be seen in the "mouse" example. The Gaussian models used by the
expectation-maximization algorithm (arguably a generalization of k-means) are
more flexible by having both variances and covariances. The EM result is thus
able to accommodate clusters of variable size much better than k-means as well
as correlated clusters (not in this example). In counterpart, EM requires the
optimization of a larger number of free parameters and poses some
methodological issues due to vanishing clusters or badly-conditioned covariance
matrices. K-means is closely related to nonparametric Bayesian modeling.[45]

k-means clustering is rather easy to apply to even large data sets, particularly
when using heuristics such as Lloyd's algorithm. It has been successfully used in
market segmentation, computer vision, and astronomy among many other
domains. It often is used as a preprocessing step for other algorithms, for
example to find a starting configuration.

k-means originates from signal processing, and still finds use in this domain. For
example, in computer graphics, color quantization is the task of reducing the
color palette of an image to a fixed number of colors k. The k-means algorithm can easily be used for this task and
produces competitive results. A use case for this approach is image segmentation. Other uses of vector quantization
include non-random sampling, as k-means can easily be used to choose k different but prototypical objects from a
large data set for further analysis.

In cluster analysis, the k-means algorithm can be used to partition the input data set into k partitions (clusters).

However, the pure k-means algorithm is not very flexible, and as such is of limited use (except for when vector
quantization as above is actually the desired use case). In particular, the parameter k is known to be hard to choose
(as discussed above) when not given by external constraints. Another limitation is that it cannot be used with
arbitrary distance functions or on non-numerical data. For these use cases, many other algorithms are superior.

k-means clustering has been used as a feature learning (or dictionary learning) step, in either (semi-)supervised learning or unsupervised
learning.[46] The basic approach is first to train a k-means clustering representation, using the input training data (which need not be labelled). Then,
to project any input datum into the new feature space, an "encoding" function, such as the thresholded matrix-product of the datum with the centroid
locations, computes the distance from the datum to each centroid, or simply an indicator function for the nearest centroid,[46][47] or some smooth
transformation of the distance.[48] Alternatively, transforming the sample-cluster distance through a Gaussian RBF, obtains the hidden layer of a
radial basis function network.[49]

This use of k-means has been successfully combined with simple, linear classifiers for semi-supervised learning in NLP (specifically for named entity
recognition)[50] and in computer vision. On an object recognition task, it was found to exhibit comparable performance with more sophisticated
feature learning approaches such as autoencoders and restricted Boltzmann machines.[48] However, it generally requires more data, for equivalent
performance, because each data point only contributes to one "feature".[46]

Applications

Vector quantization

Cluster analysis

Feature learning
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Vector quantization of colors present in
the image above into Voronoi cells using
k-means.

The slow "standard algorithm" for k-means clustering, and its associated expectation-maximization
algorithm, is a special case of a Gaussian mixture model, specifically, the limiting case when fixing all
covariances to be diagonal, equal and have infinitesimal small variance.[51]:850 Instead of small variances, a
hard cluster assignment can also be used to show another equivalence of k-means clustering to a special case
of "hard" Gaussian mixture modelling.[52](11.4.2.5) This does not mean that it is efficient to use Gaussian
mixture modelling to compute k-means, but just that there is a theoretical relationship, and that Gaussian
mixture modelling can be interpreted as a generalization of k-means; on the contrary, it has been suggested
to use k-means clustering to find starting points for Gaussian mixture modelling on difficult data.[51]:849

Another generalization of the k-means algorithm is the K-SVD algorithm, which estimates data points as a
sparse linear combination of "codebook vectors". k-means corresponds to the special case of using a single codebook vector, with a weight of 1.[53]

The relaxed solution of k-means clustering, specified by the cluster indicators, is given by principal component analysis (PCA).[54][55] The intuition is
that k-means describe spherically shaped (ball-like) clusters. If the data has 2 clusters, the line connecting the two centroids is the best 1-dimensional
projection direction, which is also the first PCA direction. Cutting the line at the center of mass separates the clusters (this is the continuous
relaxation of the discrete cluster indicator). If the data have three clusters, the 2-dimensional plane spanned by three cluster centroids is the best 2-D
projection. This plane is also defined by the first two PCA dimensions. Well-separated clusters are effectively modelled by ball-shaped clusters and
thus discovered by k-means. Non-ball-shaped clusters are hard to separate when they are close. For example, two half-moon shaped clusters
intertwined in space do not separate well when projected onto PCA subspace. k-means should not be expected to do well on this data.[56] It is
straightforward to produce counterexamples to the statement that the cluster centroid subspace is spanned by the principal directions.[57]

Basic mean shift clustering algorithms maintain a set of data points the same size as the input data set. Initially, this set is copied from the input set.
Then this set is iteratively replaced by the mean of those points in the set that are within a given distance of that point. By contrast, k-means restricts
this updated set to k points usually much less than the number of points in the input data set, and replaces each point in this set by the mean of all
points in the input set that are closer to that point than any other (e.g. within the Voronoi partition of each updating point). A mean shift algorithm
that is similar then to k-means, called likelihood mean shift, replaces the set of points undergoing replacement by the mean of all points in the input
set that are within a given distance of the changing set.[58] One of the advantages of mean shift over k-means is that the number of clusters is not pre-
specified, because mean shift is likely to find only a few clusters if only a small number exist. However, mean shift can be much slower than k-means,
and still requires selection of a bandwidth parameter. Mean shift has soft variants.

Under sparsity assumptions and when input data is pre-processed with the whitening transformation, k-means produces the solution to the linear
independent component analysis (ICA) task. This aids in explaining the successful application of k-means to feature learning.[59]

k-means implicitly assumes that the ordering of the input data set does not matter. The bilateral filter is similar to k-means and mean shift in that it
maintains a set of data points that are iteratively replaced by means. However, the bilateral filter restricts the calculation of the (kernel weighted)
mean to include only points that are close in the ordering of the input data.[58] This makes it applicable to problems such as image denoising, where
the spatial arrangement of pixels in an image is of critical importance.

The set of squared error minimizing cluster functions also includes the k-medoids algorithm, an approach which forces the center point of each
cluster to be one of the actual points, i.e. it uses medoids in place of centroids.

Different implementations of the algorithm exhibit performance differences, with the fastest on a test data set finishing in 10 seconds, the slowest
taking 25,988 seconds (~7 hours).[1] The differences can be attributed to implementation quality, language and compiler differences, different
termination criteria and precision levels, and the use of indexes for acceleration.

Relation to other algorithms

Gaussian mixture model

K-SVD

Principal component analysis

Mean shift clustering

Independent component analysis

Bilateral filtering

Similar problems
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Free Software/Open Source
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The following implementations are available under Free/Open Source Software licenses, with publicly available source code.

Accord.NET contains C# implementations for k-means, k-means++ and k-modes.
ALGLIB contains parallelized C++ and C# implementations for k-means and k-means++.
AOSP contains a Java implementation for k-means.
CrimeStat implements two spatial k-means algorithms, one of which allows the user to define the starting locations.
ELKI contains k-means (with Lloyd and MacQueen iteration, along with different initializations such as k-means++ initialization) and various more
advanced clustering algorithms.
Julia contains a k-means implementation in the JuliaStats Clustering package.
KNIME contains nodes for k-means and k-medoids.
Mahout contains a MapReduce based k-means.
mlpack contains a C++ implementation of k-means.
Octave contains k-means.
OpenCV contains a k-means implementation.
Orange includes a component for k-means clustering with automatic selection of k and cluster silhouette scoring.
PSPP contains k-means, The QUICK CLUSTER command performs k-means clustering on the dataset.
R contains three k-means variations.
SciPy and scikit-learn contain multiple k-means implementations.
Spark MLlib implements a distributed k-means algorithm.
Torch contains an unsup package that provides k-means clustering.
Weka contains k-means and x-means.

The following implementations are available under proprietary license terms, and may not have publicly available source code.

BFR algorithm
Centroidal Voronoi tessellation
Head/tail Breaks
k q-flats
K-means++
Linde–Buzo–Gray algorithm
Self-organizing map

Ayasdi
Mathematica

MATLAB
OriginPro

RapidMiner
SAP HANA

SAS
SPSS

Stata

1. Kriegel, Hans-Peter; Schubert, Erich; Zimek, Arthur (2016). "The
(black) art of runtime evaluation: Are we comparing algorithms or
implementations?". Knowledge and Information Systems. 52 (2):
341–378. doi:10.1007/s10115-016-1004-2 (https://doi.org/10.1007%2
Fs10115-016-1004-2). ISSN 0219-1377 (https://www.worldcat.org/iss
n/0219-1377). S2CID 40772241 (https://api.semanticscholar.org/Corp
usID:40772241).

2. MacQueen, J. B. (1967). Some Methods for classification and
Analysis of Multivariate Observations (http://projecteuclid.org/euclid.b
smsp/1200512992). Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability. 1. University of California
Press. pp. 281–297. MR 0214227 (https://www.ams.org/mathscinet-g
etitem?mr=0214227). Zbl 0214.46201 (https://zbmath.org/?format=co
mplete&q=an:0214.46201). Retrieved 2009-04-07.

3. Steinhaus, Hugo (1957). "Sur la division des corps matériels en
parties". Bull. Acad. Polon. Sci. (in French). 4 (12): 801–804.
MR 0090073 (https://www.ams.org/mathscinet-getitem?mr=0090073).
Zbl 0079.16403 (https://zbmath.org/?format=complete&q=an:0079.16
403).

4. Lloyd, Stuart P. (1957). "Least square quantization in PCM". Bell
Telephone Laboratories Paper. Published in journal much later: Lloyd,
Stuart P. (1982). "Least squares quantization in PCM" (http://www.cs.t
oronto.edu/~roweis/csc2515-2006/readings/lloyd57.pdf) (PDF). IEEE
Transactions on Information Theory. 28 (2): 129–137.
CiteSeerX 10.1.1.131.1338 (https://citeseerx.ist.psu.edu/viewdoc/sum
mary?doi=10.1.1.131.1338). doi:10.1109/TIT.1982.1056489 (https://d
oi.org/10.1109%2FTIT.1982.1056489). Retrieved 2009-04-15.

5. Forgy, Edward W. (1965). "Cluster analysis of multivariate data:
efficiency versus interpretability of classifications". Biometrics. 21 (3):
768–769. JSTOR 2528559 (https://www.jstor.org/stable/2528559).

6. Pelleg, Dan; Moore, Andrew (1999). "Accelerating exact k -means
algorithms with geometric reasoning" (http://portal.acm.org/citation.cf
m?doid=312129.312248). Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining -
KDD '99. San Diego, California, United States: ACM Press: 277–281.
doi:10.1145/312129.312248 (https://doi.org/10.1145%2F312129.3122
48). ISBN 9781581131437. S2CID 13907420 (https://api.semanticsch
olar.org/CorpusID:13907420).

7. MacKay, David (2003). "Chapter 20. An Example Inference Task:
Clustering" (http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/28
4.292.pdf) (PDF). Information Theory, Inference and Learning
Algorithms (http://www.inference.phy.cam.ac.uk/mackay/itila/book.htm
l). Cambridge University Press. pp. 284–292. ISBN 978-0-521-64298-
9. MR 2012999 (https://www.ams.org/mathscinet-getitem?mr=201299
9).

8. Since the square root is a monotone function, this also is the
minimum Euclidean distance assignment.

9. Hartigan, J. A.; Wong, M. A. (1979). "Algorithm AS 136: A k-Means
Clustering Algorithm". Journal of the Royal Statistical Society, Series
C. 28 (1): 100–108. JSTOR 2346830 (https://www.jstor.org/stable/234
6830).

Proprietary
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