LECTURE 2: PRELIMINARIES

1. Basic terminologies
2. Review of background knowledge



Euclidean space E™

- An n-dimensional Euclidean space is a space of elements
specified by n coordinates in real numbers with emphasis
on the structure of Euclidean geometry, such as distance
and angle, using the standard “inner product” operation.
It is a real vector space with an inner product operation.

- Notation
Commonly used 2-norm of a vector x in g?is denoted by

el = va-x =, | Y (@)

i=1

Sometimes by |x| for convenience.



General aspects of sets and functions in E™
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Unconstrained optimization problem

o let f: £ — R be a real-valued function.

Consider

Min  f(x)
s. t. resSChr”

where S C E™ 1s a “simple set”.



Basic terminologies
(1) =" € S is a minimum solution if
f(x) = f(z*). Ve e S.
We denote
f(a*) = min f(x).

(ii) =* € E™ is an infimum solution if
f(x™) = greatest lower bound of f(x)

over S.

We denote
f(7) = inf f(z).



Notations

e F": n-dimensional Euclidean space

(Sometimes we use R for E')

e S(xV.r)E&E{xrc E“’| |l — 29 < r}
(open sphere with center Y € E™

and radius » > 0)
e Sz r)E{xr e E"| | —2° <r}
(closed sphere)
e bdryS(z°.r) & {x € E"| |z — 2| = r}
(boundary of sphere)



L
Neighborhood

e N(z2Y): neighborhood of 2 is an open sphere

with center at "
e N(z%7r)= S(2% r)

e N'(2Y) & N(2Y) — {2}
(deleted neighborhood)



Open sets

e let S C E" and x € S. then = 1s an
interior point of S, if 3 N(x) C S.

o int(S) = { x € E" | x isan interior point

of S}

e S C E" isopen,if S =int(S5).




Closed sets

e Let S C £ and z € £, then x is an

accumulation point of S, if

N'(z)NS+# ¢, ¥ N(z).

e acc(S) = {x € E" | x is an accumulation

point of S }
e S C E"isclosed, if acc(S) C S.

e S = SUacc(S) is called the closure of S.




Open and closed sets
o brdy(S) £S5 —int(S)

={x€eE"|VYN(z),dy,z€ E"st.y e N(z) NS,z ¢ N(z)N S}

e S is closed if and only if § = 5.

e Theorem:

S C E™ 1s closed if and only if E™ — S is open.



Interior, accumulation, boundary points




Relatively open and close



Relatively open and close sets

o lLet AC B C E™ we say A 1s closed relative
to B if acc(A) N B C A. We also say that A is

open relative to B if B-A is closed relative to

B.

e Theorem:

Let AC B C E"™. Then A is open relative to
B, if and only if. A = BN C' for some C open
in £,



Various cones



Cones

- Definition:
Let X € £E™. Then X 1s cone, if Ao € X,

vaoe X and \A20.

Alternative definition:

e et X C E". Then X is cone, if Ao € X,
VoreXand A > 0. X 1s a pointed cone if
0 € X.




Boundedness and compactness



Bounded sets

e SC E" i1s bounded if 347 > 0 such that
S C N(O,7r).

e Theorem (Bolzano-Weierstrass)

If S c E™is bounded and S contains

infinitely many points, then acc(S) # o.

- https://en.wikipedia.org/wiki/Bolzano%E2%80%93Weierst
rass_theorem



Compact sets

e A collection F' of sets is said to be a covering
of a given set S, if S C Upcpl'. When 1 is
open, V1 € F, then F is called an open

covering of S.

e Theorem(Heine-Borel)
Let S € E™ be closed and bounded and F be

an open covering of S. Then 3 a finite

subcollection of F that covers S.

e S C E" 1s compact if, and only if, every open

covering of S contains a finite subcollection

that also covers S.



Compact sets

e Theorem:
Let S C E™. Then the following statements

are equivalent:
(1) S is compact;
(i1) S is closed and bounded:;

(ii1) Every infinite subset of S has an

accumulation point i 9.



Convex sets and convex hulls



Convex sets

o Let ', 22 € E™, the line segment formed by

rltand 22 is
L(z',2?) & {x € E'”|:1: = Gzt + (1 — )2
for some € € [0,1]}.

e S C E™1s convex if

Lzt 2*)C S, Val 2*eS.




Convex hulls

o et S C E"™. The convex hull of S 1s the

intersection of all convex sets containing S.

1.e..

co(S) = N T

SCT:convex
e The closure of co(S) is called the closed

convex hull of S.




Extreme points



Extreme points

e let S C E™ be convex and z € S. Then x 1s

an extreme point of 5. if

v & L'zt 2?), Vol 2% € S and 2! # 22

where

Li(at, a?) & {x € B | r =0z + (1 —0)a?
for some 6 € (0,1)}




Characterization of convex sets

¢ Theorem
A closed bounded convex set S C E™ is equal

to the closed convex hull of its extreme points.



Separation and supporting hyperplanes

Theorem (Separating):

Let S C E™ be convex and y ¢ S. Then 3 a
vector a € B

=.1.

aly < inf a'z
TES



L
Separation and supporting hyperplanes

Theorem (Supporting): Let 5§ C E™ be convex
and y € bdry(S). Then 3 a hyperplane containing

y and contaming 5 m one of 1ts closed half spaces,
le, Ja€ E" and b€ R s.t.

a'y="band a'r>h VYreb.



Feasible directions



L
Feasible directions
e et Sc E"and v’ c S. Thendc E™ is a

feasible direction of z in S if 36 = 0 s.t.
™ +68d € S, ¥8ec]|0,8].

e Theorem

Let S € E" be closed. Then S is convex if
and only if, forall x° € S, d=r — 2" is a
feasible direction of z" in §, ¥V r € § and
T # 10,



Continuous functions

o Let f:5C E™— E™ and z° € aee(S). Then
f is continuous at ¥ provided that
(i) f is defined at z"

(i) lim,_ 5o f(z) = f(2°)

If f1s continuous on every point of S, we say
f is continmous on S, i.e., f € C[(S).




Characterization of continuous functions

¢ Theorem
Let f: 5 C E™ — E™ and
T=f(S)={yec E™ |y=f{:r:} for some
re S}
Then the following statements are equivalent:
(i) fec(s);
(ii}) If ¥ is open relative to T, then f—1(Y") is

open relative to 5

(iii) If V is closed relative to T, then f— 1Y) is
closed relative to 5.



Optimization of continuous functions

¢ Theorem(Bolzano)
Let f: E™ — R be continuous and S C E™be

compact. Then f achieves both its maximum
and minimum on S, and f(S) is compact.



Differentiable functions

e Let f:SCE™— Rand S 1s open . Then
f € CYS) means its first partial derivatives
are continuous at each point of 5. We denote
its gradient as

Z(C R L

e Similarly, f € C7(S) means its p-th partial
derivatives are continuous at each point of 5.



Differentiable functions

e If f c C?S). we denote its Hesslan as

]ﬂ-::'liﬂ-

which 15 a syvmmetric square matrix of
dimensionality .



Differentiable functions

e Let f=(f1,f2, -, fm)and f; : E™ — R bhe
real-valued function. If f, e CP, Vi=1,....
m, then we say f € CP.

e If f € C', we define

af;
Vi(z) £ [Efj]m

e If f € CZ, its Hessian
F(z) = (Fi(z), Fa(x), -, Fm (1))

15 a third-order tensor.



Taylor theorem — 1 dimensional case

Assume that

f:R— R, feC"[a,b]), o€ [a,b].

Then ¥V x € |a,b] and = # zp ,
3 1y =68rg+ (1 —8)x with & € (0,1)

2.1,

n—1
) = fz0)+3 0) (gt + L (3



Approximation
e feC?

f(x) = f(zo) + f (z1)(x — z0)
o [cCF

£(x) = fzo)+ [ (o) (z—zo)+5 [ (21)(z—70)?
e When r == xg

f* '[1-‘11}

(x — xo)* + o)

f(x) = f(xo) + Z

~ f(z0) + Z I7C0) (3 g



Taylor Theorem — n dimensional case

Let f: E™" — R, SC E™hbeopen, f&C™(5),
.z e 8, ' #2? and L(x!, 2% C S.
Then 3 7 =6z'+ (1 —8)z* € L'(z',z*) st
m—1 i
flz) = flz") + »  d“f(z' 2% —2')

— k!

1 1 1
+ﬁd'“f[:c1:r: — T

where d* f(z;t) is the k-th order differential of
function f along £.



Taylor Theorem
e [
f(z%) = fl=z') + Vf(z)(z* — 2')
e fc(C*

f(z*) = f(z') + Vf(z')(z* — =)

+%{f — TR (22 — 2Y)



Approximation

When T == r!

m—1

1
fl@) = (=) + ) Hd*f(ztiz—2")
k=1
Take m = 2

flz) = flz') + Vf(z')(z —z')
Assume V f(z!) £ 0.

- Take r — ' =V f(z!), i.e., moving from x!

in the gradient direction at x!

flz) = fz") + IVF(= ) > (=)



L
Approximation

- For z — 2! = — [V f(x!})], ie,, moving from x!
in the negative gradient direction

flz) = f(z') = V(") < f(z)

- For any d = x — z!

V(') (z —=2) = |||V f(z')] cos

g
projection of V fir!l) onto d



L
Approximation

¢ Takem=23

flx) = fl2') + Vf(z2')(z — 1)
+ %[I — "V F(z")(z - ")

— I VFfir') =0 and F(1') is positive definite, then
flx) = f(=") 4 3(z — ) F()(x - ="} > f(2)

— I VFf(r') =0 and F(1') is negative definite, then
flx) = fl=') + 3z — T F()(x — ') < fl«')



Big O and small o

Let g(-) be a real-valued function on R.

(1) If g(x) goes to zero at least as fast as =
does, i.e., Z ¢ > 0 such that

‘ g{x)

|-:ir3 as r — [,

then we say g{:r]l = O(zx).

(2) If g(x) goes to zero faster than r does, i.e.,
|g{$}\ —0 asz — 0,

then we say g(x) = ol(x).



	706-Lecture-2
	Lecture 2: Preliminaries
	 
	 
	Unconstrained optimization problem
	Basic terminologies
	Notations
	Neighborhood
	Open sets
	Closed sets
	Open and closed sets
	Interior, accumulation, boundary points
	Relatively open and close
	Relatively open and close sets
	Various cones
	Cones
	Boundedness and compactness
	Bounded sets
	Compact sets
	Compact sets
	Convex sets and convex hulls
	Convex sets
	Convex hulls
	Extreme points
	Extreme points
	Characterization of convex sets
	Separation and supporting hyperplanes
	Separation and supporting hyperplanes
	Feasible directions
	Feasible directions
	Continuous functions
	Characterization of continuous functions
	Optimization of continuous functions
	Differentiable functions
	Differentiable functions
	Differentiable functions
	Taylor theorem – 1 dimensional case
	Approximation
	Taylor Theorem – n dimensional case
	Taylor Theorem
	Approximation
	Approximation
	Approximation
	Big O and small o


