LECTURE 2: PRELIMINARIES

- 1. Basic terminologies
- 2. Review of background knowledge

Euclidean space E^n

- An *n*-dimensional Euclidean space is a space of elements specified by *n* coordinates in real numbers with emphasis on the structure of Euclidean geometry, such as distance and angle, using the standard "inner product" operation. It is a real vector space with an inner product operation.
- Notation

Commonly used 2-norm of a vector x in \mathbf{E}^n is denoted by

$$\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\sum_{i=1}^{n} (x_i)^2}.$$

Sometimes by |x| for convenience.

General aspects of sets and functions in E^n

- ◊ boundary / interior points
 ◊ continuous functions
- ♦ closed / open sets
- ♦ bounded / compact sets

sets

♦ convex sets

÷

- ♦ differentiable functions
- o convex / concave functions
- ♦ Taylor Series

Unconstrained optimization problem

• Let $f: E^n \to R$ be a real-valued function. Consider

 $\begin{array}{ll} \mathrm{Min} & f(x) \\ \mathrm{s. \ t.} & x \in S \subset E^n \\ \mathrm{where} & S \subset E^n \ \mathrm{is \ a} \ ``simple \ set". \end{array}$

Basic terminologies

(i) $x^* \in S$ is a minimum solution if $f(x) \ge f(x^*), \forall x \in S.$

We denote

$$f(x^*) = \min_{x \in S} f(x).$$

(ii) $x^* \in E^n$ is an infimum solution if $f(x^*) =$ greatest lower bound of f(x)over S.

We denote

$$f(x^*) = \inf_{x \in S} f(x).$$

Notations

- Eⁿ: n-dimensional Euclidean space (Sometimes we use R for E¹)
 S(x⁰, r) ≜ {x ∈ Eⁿ | |x - x⁰| < r} (open sphere with center x⁰ ∈ Eⁿ and radius r > 0)
- $\overline{S}(x^0, r) \triangleq \{x \in E^n | |x x^0| \le r\}$ (closed sphere)
- $\operatorname{bdry} S(x^0, r) \triangleq \{x \in E^n | |x x^0| = r\}$ (boundary of sphere)

Neighborhood

• $N(x^0)$: neighborhood of x^0 is an open sphere with center at x^0

•
$$N(x^0;r) \triangleq S(x^0,r)$$

• $N'(x^0) \triangleq N(x^0) - \{x^0\}$

(deleted neighborhood)

Open sets

- Let $S \subset E^n$ and $x \in S$, then x is an interior point of S, if $\exists N(x) \subset S$.
- $int(S) \triangleq \{ x \in E^n \mid x \text{ is an interior point}$ of $S \}$
- $S \subset E^n$ is open, if S = int(S).

Closed sets

• Let $S \subset E^n$ and $x \in E^n$, then x is an <u>accumulation point</u> of S, if

 $N'(x) \cap S \neq \phi, \quad \forall N(x).$

- $acc(S) \triangleq \{x \in E^n \mid x \text{ is an accumulation}$ point of S }
- $S \subset E^n$ is closed, if $acc(S) \subset S$.
- $\bar{S} \triangleq S \cup acc(S)$ is called the <u>closure</u> of S.

Open and closed sets

• $\operatorname{brdy}(S) \triangleq \overline{S} - \operatorname{int}(S)$

 $= \{ \mathbf{x} \in E^n \mid \forall N(x), \exists \mathbf{y}, \mathbf{z} \in E^n \text{ s.t. } y \in N(x) \cap S, z \notin N(x) \cap S \}$

• S is closed if and only if $S = \overline{S}$.

• Theorem:

 $S \subset E^n$ is closed if and only if $E^n - S$ is open.

Interior, accumulation, boundary points

- : (1)(4)
- **A**: 1245
- **B**: 235

Relatively open and close

Relatively open and close sets

- Let $A \subset B \subset E^n$ we say A is <u>closed relative</u> <u>to B</u> if $acc(A) \cap B \subset A$. We also say that A is <u>open relative to B</u> if B-A is closed relative to B.
- Theorem:

Let $A \subset B \subset E^n$. Then A is open relative to B, if and only if, $A = B \cap C$ for some C open in E^n .

Various cones

Cones

• Definition:

Let $X \subset E^n$. Then X is <u>cone</u>, if $\lambda x \in X$,

 $\forall x \in X \text{ and } \lambda \geq 0.$

Alternative definition:

• Let $X \subset E^n$. Then X is <u>cone</u>, if $\lambda x \in X$, $\forall x \in X$ and $\lambda > 0$. X is a <u>pointed cone</u> if $0 \in X$.

Boundedness and compactness

Bounded sets

- $S \subset E^n$ is <u>bounded</u> if $\exists r > 0$ such that $S \subset N(0, r)$.
- Theorem (Bolzano-Weierstrass) If $S \subset E^n$ is bounded and S contains infinitely many points, then $acc(S) \neq \phi$.
- https://en.wikipedia.org/wiki/Bolzano%E2%80%93Weierst rass_theorem

Compact sets

- A collection F of sets is said to be a covering of a given set S, if $S \subset U_{T \in F}T$. When T is open, $\forall T \in F$, then F is called an <u>open</u> covering of S.
- Theorem(Heine-Borel)
 Let S ⊂ Eⁿ be closed and bounded and F be an open covering of S. Then ∃ a finite subcollection of F that covers S.
- $S \subset E^n$ is <u>compact</u> if, and only if, every open covering of S contains a finite subcollection that also covers S.

Compact sets

- Theorem:
 - Let $S \subset E^n$. Then the following statements are equivalent:
 - (i) S is compact;
 - (ii) S is closed and bounded;
 - (iii) Every infinite subset of S has an accumulation point in S.

Convex sets and convex hulls

Convex sets

- Let $x^1, x^2 \in E^n$, the line segment formed by x^1 and x^2 is $L(x^1, x^2) \triangleq \{x \in E^n | x = \theta x^1 + (1 - \theta) x^2$ for some $\theta \in [0, 1]\}.$
- $S \subset E^n$ is <u>convex</u> if $L(x^1, x^2) \subset S, \quad \forall x^1, x^2 \in S.$

Convex hulls

Let S ⊂ Eⁿ. The <u>convex hull</u> of S is the intersection of all convex sets containing S, i.e.,

 $co(S) = \underset{S \subset T: convex}{\cap} T$

• The closure of co(S) is called the <u>closed</u> <u>convex hull</u> of S. **Extreme points**

Extreme points

• Let $S \subset E^n$ be convex and $x \in S$. Then x is an <u>extreme point</u> of S, if $x \notin L^i(x^1, x^2), \ \forall x^1, x^2 \in S$ and $x^1 \neq x^2$ where $L^i(x^1, x^2) \triangleq \{x \in E^n \mid x = \theta x^1 + (1 - \theta) x^2$ for some $\theta \in (0, 1)\}$

Characterization of convex sets

• Theorem

A closed bounded convex set $S \subset E^n$ is equal to the closed convex hull of its extreme points.

Separation and supporting hyperplanes

Theorem (Separating):

Let $S \subset E^n$ be convex and $y \notin \overline{S}$. Then \exists a vector $a \in E^n$

s.t.

 $a^T y < \inf_{x \in S} \ a^T x$

Separation and supporting hyperplanes

Theorem (Supporting): Let $S \subset E^n$ be convex and $y \in bdry(S)$. Then \exists a hyperplane containing y and containing S in one of its closed half spaces, i.e., $\exists a \in E^n$ and $b \in R$ s.t.

 $a^T y = b$ and $a^T x \ge b$, $\forall x \in S$.

Feasible directions

Feasible directions

Let S ∈ Eⁿ and x⁰ ∈ S. Then d ∈ Eⁿ is a feasible direction of x⁰ in S if ∃ θ̄ > 0 s.t.
 x⁰ + θd ∈ S, ∀ θ ∈ [0, θ̄].

• Theorem

Let $S \in E^n$ be closed. Then S is convex if and only if, for all $x^0 \in S$, $d \triangleq x - x^0$ is a feasible direction of x^0 in $S, \forall x \in S$ and $x \neq x^0$.

Continuous functions

Let f: S ⊂ Eⁿ → E^m and x⁰ ∈ acc(S). Then f is <u>continuous at x⁰</u> provided that (i) f is defined at x⁰ (ii) lim_{x→x⁰} f(x) = f(x⁰) If f is continuous on every point of S, we say f is continuous on S, i.e., f ∈ C(S).

Characterization of continuous functions

• Theorem

Let $f: S \subset E^n \to E^m$ and

 $T = f(S) = \{ y \in E^m \mid y = f(x) \text{ for some } x \in S \}.$

Then the following statements are equivalent:

- (i) $f \in C(S)$;
- (ii) If Y is open relative to T, then f⁻¹(Y) is open relative to S;
- (iii) If Y is closed relative to T, then f⁻¹(Y) is closed relative to S.

Optimization of continuous functions

• Theorem(Bolzano)

Let $f: E^n \to R$ be continuous and $S \subset E^n$ be compact. Then f achieves both its maximum and minimum on S, and f(S) is compact.

Differentiable functions

 Let f: S ⊂ Eⁿ → R and S is open. Then f ∈ C¹(S) means its first partial derivatives are continuous at each point of S. We denote its gradient as

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \cdots, \frac{\partial f(x)}{\partial x_n}\right]_{1 \times n}$$

 Similarly, f ∈ C^p(S) means its p-th partial derivatives are continuous at each point of S.

Differentiable functions

If f ∈ C²(S), we denote its Hessian as

$$F(x) = \left[\frac{\partial^2 f(x)}{\partial x_i x_j}\right]_{n \times n}$$

which is a symmetric square matrix of dimensionality n.

Differentiable functions

- Let $f = (f_1, f_2, \dots, f_m)$ and $f_i : E^n \to R$ be real-valued function. If $f_i \in C^p$, $\forall i = 1, \dots, m$, then we say $f \in C^p$.
- If $f \in C^1$, we define

$$\nabla f(x) \triangleq \left[\frac{\partial f_i}{\partial x_j}\right]_{m \times n}$$

• If $f \in C^2$, its Hessian

 $F(x) \triangleq (F_1(x), F_2(x), \cdots, F_m(x))$

is a third-order tensor.

Taylor theorem – 1 dimensional case

Assume that

 $f: R \to R, f \in C^n([a,b]), x_0 \in [a,b].$

Then $\forall x \in [a, b]$ and $x \neq x_0$, $\exists x_1 = \theta x_0 + (1 - \theta) x \text{ with } \theta \in (0, 1)$ s.t.

$$f(x) = f(x_0) + \sum_{k=1}^{n-1} \frac{f^k(x_0)}{k!} (x - x_0)^k + \frac{f^n(x_1)}{n!} (x - x_0)^n$$

• $f \in C^1$

$$f(x) = f(x_0) + f'(x_1)(x - x_0)$$

• $f \in C^2$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_1)(x - x_0)^2$$

When x ≈ x₀

$$f(x) = f(x_0) + \sum_{k=1}^{n-1} \frac{f^k(x_0)}{k!} (x - x_0)^k + o(\cdot)$$

$$\approx f(x_0) + \sum_{k=1}^{n-1} \frac{f^k(x_0)}{k!} (x - x_0)^k$$

Taylor Theorem – *n* dimensional case

Let $f: E^n \to R$, $S \subset E^n$ be open, $f \in C^m(S)$, $x^1, x^2 \in S$, $x^1 \neq x^2$ and $L(x^1, x^2) \subset S$. Then $\exists \ \bar{x} = \theta x^1 + (1 - \theta) x^2 \in L^i(x^1, x^2)$ s.t.

$$f(x^{2}) = f(x^{1}) + \sum_{k=1}^{m-1} \frac{1}{k!} d^{k} f(x^{1}, x^{2} - x^{1})$$

$$+rac{1}{m!}d^mf(ar x;x^2-x^1)$$

where $d^k f(x;t)$ is the k-th order differential of function f along t.

Taylor Theorem

• $f \in C^1$

$$f(x^2) = f(x^1) + \nabla f(\bar{x})(x^2 - x^1)$$

 $\bullet \ f \in C^2$

$$\begin{split} f(x^2) &= f(x^1) + \nabla f(x^1)(x^2 - x^1) \\ &+ \frac{1}{2} (x^2 - x^1)^T F(\bar{x})(x^2 - x^1) \end{split}$$

When $x \approx x^1$

$$f(x) \approx f(x^1) + \sum_{k=1}^{m-1} \frac{1}{k!} d^k f(x^1; x - x^1)$$

Take m = 2

$$f(x) \approx f(x^1) + \nabla f(x^1)(x - x^1)$$

Assume $\nabla f(x^1) \neq 0$.

Take x − x¹ = ∇f(x¹), i.e., moving from x¹
 in the gradient direction at x¹

 $f(x) \approx f(x^1) + \|\nabla f(x^1)\|^2 > f(x^1)$

For x − x¹ = −[∇f(x¹)], i.e., moving from x¹
 in the negative gradient direction

 $f(x) \approx f(x^1) - \|\nabla f(x^1)\|^2 < f(x^1)$

- For any
$$d \triangleq x - x^1$$

$$\nabla f(x^{1})(x - x^{1}) = \|d\| \underbrace{\|\nabla f(x^{1})\| \cos \theta}_{\text{projection of } \nabla f(x^{1}) \text{ onto } d}$$

Take m = 3

$$f(x) \approx f(x') + \nabla f(x')(x - x') + \frac{1}{2}(x - x')^T F(x')(x - x')$$

- If $\nabla f(x') = 0$ and F(x') is positive definite, then $f(x) \approx f(x') + \frac{1}{2}(x - x')^T F(x')(x - x') > f(x')$
- If $\nabla f(x') = 0$ and F(x') is negative definite, then $f(x) \approx f(x') + \frac{1}{2}(x - x')^T F(x')(x - x') < f(x')$

Big O and small o

Let g(·) be a real-valued function on R.
(1) If g(x) goes to zero at least as fast as x does, i.e., ∃ c ≥ 0 such that

$$\left|\frac{g(x)}{x}\right| \le c \text{ as } x \to 0,$$

then we say g(x) = O(x).

If g(x) goes to zero faster than x does, i.e.,

$$\left|\frac{g(x)}{x}\right| = 0 \text{ as } x \to 0,$$

then we say g(x) = o(x).