LECTURE 2: PRELIMINARIES

- 1. Basic terminologies
- 2. Review of background knowledge

Euclidean space E^n

- An *n*-dimensional Euclidean space is a space of elements specified by *n* coordinates in real numbers with emphasis on the structure of Euclidean geometry, such as distance and angle, using the standard "inner product" operation. It is a real vector space with an inner product operation.
- Notation

Commonly used 2-norm of a vector x in $Eⁿ$ is denoted by

$$
\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\sum_{i=1}^{n} (x_i)^2}.
$$

Sometimes by |x| for convenience.

General aspects of sets and functions in E^n

- \diamond boundary / interior points \diamond continuous functions
- \diamond closed / open sets
- \diamond bounded / compact sets

sets

o convex sets

ż

 \bullet

-
- o differentiable functions
- \diamond convex / concave functions
- \diamond Taylor Series

functions

Unconstrained optimization problem

• Let $f: E^n \to R$ be a real-valued function. Consider

> Min $f(x)$ s. t. $x \in S \subset E^n$ where $S \subset E^n$ is a "simple set".

Basic terminologies

(i) $x^* \in S$ is a minimum solution if $f(x) \geq f(x^*), \forall x \in S.$

We denote

$$
f(x^*) = \min_{x \in S} f(x).
$$

(ii) $x^* \in E^n$ is an infimum solution if $f(x^*) =$ greatest lower bound of $f(x)$ over S .

We denote

$$
f(x^*) = \inf_{x \in S} f(x).
$$

Notations

- \bullet E^n : n-dimensional Euclidean space (Sometimes we use R for E^1) • $S(x^0, r) \triangleq \{x \in E^n \mid |x - x^0| < r\}$ (open sphere with center $x^0 \in E^n$ and radius $r > 0$
- $\overline{S}(x^0, r) \triangleq \{x \in E^n \mid |x x^0| \leq r\}$ (closed sphere)
- bdry $S(x^0, r) \triangleq \{x \in E^n | |x x^0| = r\}$ (boundary of sphere)

Neighborhood

• $N(x^0)$: neighborhood of x^0 is an open sphere with center at x^0

•
$$
N(x^0; r) \triangleq S(x^0, r)
$$

• $N'(x^0) \triangleq N(x^0) - \{x^0\}$

(deleted neighborhood)

Open sets

- Let $S \subset E^n$ and $x \in S$, then x is an interior point of S, if $\exists N(x) \subset S$.
- $int(S) \triangleq \{ x \in E^n | x$ is an interior point of S
- $S \subset E^n$ is open, if $S = int(S)$.

Closed sets

• Let $S \subset E^n$ and $x \in E^n$, then x is an accumulation point of S, if

 $N'(x) \cap S \neq \phi$, $\forall N(x)$.

- $acc(S) \triangleq \{x \in E^n \mid x \text{ is an accumulation}\}$ point of $S \}$
- $S \subset E^n$ is closed, if $acc(S) \subset S$.
- $\bar{S} \triangleq S \cup acc(S)$ is called the closure of S.

Open and closed sets

• brdy $(S) \triangleq \overline{S} - \text{int}(S)$

 $= \{ \mathbf{x} \in E^n \mid \forall N(x), \exists \mathbf{y}, \mathbf{z} \in E^n \text{ s.t. } y \in N(x) \cap S, z \notin N(x) \cap S \}.$

• S is closed if and only if $S = S$.

Theorem:

 $S \subset E^n$ is closed if and only if $E^n - S$ is open.

Interior, accumulation, boundary points

- F : \odot \odot \odot \odot \odot
- **I** : $\left(1\right)\left(4\right)$
- $\mathbf{A} : (1)(2)(4)(5)$
	- \mathbf{B} : (2)(3)(5)

Relatively open and close

Relatively open and close sets

- Let $A \subset B \subset E^n$ we say A is closed relative to B if $acc(A) \cap B \subset A$. We also say that A is open relative to B if B-A is closed relative to **B.**
- \bullet Theorem:

Let $A \subset B \subset E^n$. Then A is open relative to B, if and only if, $A = B \cap C$ for some C open in E^n .

Various cones

Cones

• Definition:

Let $X \subset E^n$. Then X is cone, if $\lambda x \in X$,

 $\forall x \in X$ and $\lambda \geq 0$.

Alternative definition:

• Let $X \subset E^n$. Then X is cone, if $\lambda x \in X$, $\forall x \in X$ and $\lambda > 0$. X is a pointed cone if $0 \in X$.

Boundedness and compactness

Bounded sets

- $S \subset E^n$ is bounded if $\exists r > 0$ such that $S \subset N(0,r)$.
- Theorem $(Bolzano-Weierstrass)$ If $S \subset E^n$ is bounded and S contains infinitely many points, then $acc(S) \neq \phi$.
- https://en.wikipedia.org/wiki/Bolzano%E2%80%93Weierst rass theorem

Compact sets

- A collection F of sets is said to be a covering of a given set S, if $S \subset U_{T \in F}T$. When T is open, $\forall T \in F$, then F is called an open covering of S.
- Theorem (Heine-Borel) Let $S \subset E^n$ be closed and bounded and F be an open covering of S. Then \exists a finite subcollection of F that covers S.
- $S \subset E^n$ is compact if, and only if, every open covering of S contains a finite subcollection that also covers S.

Compact sets

- \bullet Theorem:
	- Let $S \subset E^n$. Then the following statements are equivalent:
	- (i) S is compact;
	- (ii) S is closed and bounded;
	- (iii) Every infinite subset of S has an $accumulation$ point in S .

Convex sets and convex hulls

-
-
- -
- -

Convex sets

- Let $x^1, x^2 \in E^n$, the line segment formed by x^1 and x^2 is $L(x^1, x^2) \triangleq \{x \in E^n | x = \theta x^1 + (1 - \theta)x^2\}$ for some $\theta \in [0,1]$.
- $S \subset E^n$ is convex if $L(x^1, x^2) \subset S$, $\forall x^1, x^2 \in S$.

Convex hulls

• Let $S \subset E^n$. The convex hull of S is the intersection of all convex sets containing S , *i.e.*,

 $co(S) = \bigcap_{S \subset T: convex} T$

• The closure of $co(S)$ is called the closed convex hull of S .

Extreme points

Extreme points

• Let $S \subset E^n$ be convex and $x \in S$. Then x is an extreme point of S , if $x \notin L^i(x^1, x^2), \ \forall x^1, x^2 \in S \text{ and } x^1 \neq x^2$ where $L^{i}(x^{1},x^{2}) \triangleq \{x \in E^{n} \mid x = \theta x^{1} + (1 - \theta)x^{2}\}$ for some $\theta \in (0,1)$

Characterization of convex sets

\bullet Theorem

A closed bounded convex set $S \subset E^n$ is equal to the closed convex hull of its extreme points.

Separation and supporting hyperplanes

Theorem (Separating):

Let $S \subset E^n$ be convex and $y \notin \overline{S}$. Then \exists a vector $a \in E^n$

s.t.

 $a^Ty < \inf_{x \in S} a^Tx$

Separation and supporting hyperplanes

Theorem (Supporting): Let $S \subset E^n$ be convex and $y \in bdry(S)$. Then \exists a hyperplane containing y and containing S in one of its closed half spaces, i.e., $\exists a \in E^n$ and $b \in R$ s.t.

 $a^Ty = b$ and $a^Tx \ge b$, $\forall x \in S$.

Feasible directions

Feasible directions

• Let $S \in E^n$ and $x^0 \in S$. Then $d \in E^n$ is a feasible direction of x^0 in S if $\exists \bar{\theta} > 0$ s.t. $x^0 + \theta d \in S, \forall \theta \in [0, \overline{\theta}].$

\bullet Theorem

Let $S \in E^n$ be closed. Then S is convex if and only if, for all $x^0 \in S$, $d \triangleq x - x^0$ is a feasible direction of x^0 in $S, \forall x \in S$ and $x \neq x^0$.

Continuous functions

• Let $f: S \subset E^n \to E^m$ and $x^0 \in acc(S)$. Then f is continuous at x^0 provided that (*i*) f is defined at x^0 (ii) $\lim_{x\to x^0} f(x) = f(x^0)$ If f is continuous on every point of S , we say f is continuous on S, i.e., $f \in C(S)$.

Characterization of continuous functions

\bullet Theorem

Let $f: S \subset E^n \to E^m$ and $T = f(S) = \{y \in E^{m} \mid y = f(x) \text{ for some }$ $x \in S$.

Then the following statements are equivalent:

(i) $f \in C(S)$;

- (ii) If Y is open relative to T, then $f^{-1}(Y)$ is open relative to S ;
- (iii) If Y is closed relative to T, then $f^{-1}(Y)$ is closed relative to S .

Optimization of continuous functions

• Theorem (Bolzano)

Let $f: E^n \to R$ be continuous and $S \subset E^n$ be compact. Then f achieves both its maximum and minimum on S , and $f(S)$ is compact.

Differentiable functions

• Let $f: S \subset E^n \to R$ and S is open. Then $f \in C^1(S)$ means its first partial derivatives are continuous at each point of S . We denote its gradient as

$$
\nabla f(x)=[\frac{\partial f(x)}{\partial x_1},\cdots,\frac{\partial f(x)}{\partial x_n}]_{1\times n}
$$

• Similarly, $f \in C^p(S)$ means its p-th partial derivatives are continuous at each point of S .

Differentiable functions

• If $f \in C^2(S)$, we denote its Hessian as

$$
F(x)=[\frac{\partial^2 f(x)}{\partial x_i x_j}]_{n\times n}
$$

which is a symmetric square matrix of dimensionality n .

Differentiable functions

- Let $f = (f_1, f_2, \dots, f_m)$ and $f_i : E^n \to R$ be real-valued function. If $f_i \in C^p$, $\forall i = 1, ...,$ m, then we say $f \in C^p$.
- If $f \in C^1$, we define

$$
\nabla f(x) \triangleq [\frac{\partial f_i}{\partial x_j}]_{m \times n}
$$

• If $f \in C^2$, its Hessian

$$
F(x) \triangleq (F_1(x), F_2(x), \cdots, F_m(x))
$$

is a third-order tensor.

Taylor theorem – 1 dimensional case

Assume that

 $f: R \to R$, $f \in C^{n}([a, b]), \ x_0 \in [a, b].$

Then $\forall x \in [a, b]$ and $x \neq x_0$, $\exists x_1 = \theta x_0 + (1-\theta)x \text{ with } \theta \in (0,1)$

s.t.

$$
f(x) = f(x_0) + \sum_{k=1}^{n-1} \frac{f^k(x_0)}{k!} (x - x_0)^k + \frac{f^n(x_1)}{n!} (x - x_0)^n
$$

 $\bullet\;\, f\in C^{1}$

$$
f(x) = f(x_0) + f^{'}(x_1)(x - x_0)
$$

 $\bullet\;\, f\in C^{2}$

$$
f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_1)(x - x_0)^2
$$

• When $x \approx x_0$

$$
f(x) = f(x_0) + \sum_{k=1}^{n-1} \frac{f^k(x_0)}{k!} (x - x_0)^k + o(\cdot)
$$

$$
\approx f(x_0) + \sum_{k=1}^{n-1} \frac{f^k(x_0)}{k!} (x - x_0)^k
$$

Taylor Theorem $- n$ dimensional case

Let $f: E^n \to R$, $S \subset E^n$ be open, $f \in C^m(S)$, $x^1, x^2 \in S$, $x^1 \neq x^2$ and $L(x^1, x^2) \subset S$. Then $\exists \ \ \bar{x} = \theta x^1 + (1-\theta)x^2 \in L^i(x^1, x^2)$ s.t.

$$
f(x^2) = f(x^1) + \sum_{k=1}^{m-1} \frac{1}{k!} d^k f(x^1, x^2 - x^1)
$$

$$
+\frac{1}{m!}d^m f(\bar x;x^2-x^1)
$$

where $d^k f(x;t)$ is the k-th order differential of function f along t .

Taylor Theorem

 $\bullet\;\; f\in C^{1}$

$$
f(x^2) = f(x^1) + \nabla f(\bar x)(x^2 - x^1)
$$

 $\bullet\ f\in C^{2}$

$$
f(x^2) = f(x^1) + \nabla f(x^1)(x^2 - x^1) \\ + \frac{1}{2}(x^2 - x^1)^T F(\bar{x})(x^2 - x^1)
$$

When $x \approx x^1$

$$
f(x) \approx f(x^1) + \sum_{k=1}^{m-1} \frac{1}{k!} d^k f(x^1; x - x^1)
$$

Take $m=2$

$$
f(x) \approx f(x^1) + \nabla f(x^1)(x - x^1)
$$

Assume $\nabla f(x^1) \neq 0$.

- Take $x - x^1 = \nabla f(x^1)$, i.e., moving from x^1 in the gradient direction at x^1

 $f(x) \approx f(x^1) + ||\nabla f(x^1)||^2 > f(x^1)$

- For $x - x^1 = -[\nabla f(x^1)]$, i.e., moving from x^1 in the negative gradient direction

 $f(x) \approx f(x^1) - ||\nabla f(x^1)||^2 < f(x^1)$

For any
$$
d \triangleq x - x^1
$$

$$
\nabla f(x^1)(x - x^1) = ||d|| ||\nabla f(x^1)|| \cos \theta
$$

projection of $\nabla f(x^1)$ onto d

 \bullet Take $m=3$

$$
f(x) \approx f(x') + \nabla f(x')(x - x')
$$

+
$$
\frac{1}{2}(x - x')^T F(x')(x - x')
$$

- If $\nabla f(x') = 0$ and $F(x')$ is positive definite, then $f(x) \approx f(x') + \frac{1}{2}(x - x')^T F(x')(x - x') > f(x')$
- If $\nabla f(x') = 0$ and $F(x')$ is negative definite, then $f(x) \approx f(x') + \frac{1}{2}(x - x')^T F(x')(x - x') < f(x')$

Big O and small o

Let $q(\cdot)$ be a real-valued function on R.

(1) If $g(x)$ goes to zero at least as fast as x does, i.e., $\exists c \geq 0$ such that

$$
\frac{g(x)}{x}\Big|\leq c\ \ \text{as}\ x\to 0,
$$

then we say $g(x) = O(x)$.

(2) If $g(x)$ goes to zero faster than x does, i.e.,

$$
\big|\frac{g(x)}{x}\big|=0\ \ {\rm as}\ x\to 0,
$$

then we say $g(x) = o(x)$.