LECTURE 3: OPTIMALITY
CONDITIONS

1. First order and second order information

2. Necessary and sufficient conditions of
optimality

3. Convex functions

4. Elementary solution methods



General setting

- General form nonlinear programming problem

Min f(x)
s.t. rcSCE"

where 5 can be a “simple” set

or S=2{recE" | gilr)<0,i=1,...,m;
hi(z) =0, j=1,...,n:
reX}



| ocal minimum

Definition A point " £ 5 is said to be a relafive
manimum powmnt or a local mimymum pomnt of f over S
if there is an € > 0 such that f{x) > fizr*) for all x €
SMNN(x*.e), where N(x*,€) is the neichborhood of =*
of radius e. If f(x) > f(z") forall x € SN N(z",€)
and x # 7, then " is said to be a strictly relative
mimamum pomnt of f over 5.



Global minimum

Definition A pomnt z* € 5 15 said to be a global

minimum point of f over §if f(z) > f(z") forall z €
S I f(xr) > f(z") forallz € 5, # 2", then z” i
sald to be a sirctly global minimum powt of [ over 5.



Comments

- We always intend to seek a global minimum when
formulating an optimization problem.

- In most situations, optimization theory and
methodologies only enable us to locate local minimums.

- Global optimality can be achieved when certain
convexity conditions are imposed.



A general Iterative scheme

- A general scheme of an iterative solution procedure:
Step 1: Start from a feasible solution x in S.
Step 2: Check if the current solution is optimal.
If the answer is Yes, stop.

If the answer Is No, continue.

Step 3: Move to a better feasible solution and
return to Step 2.



What are the feasible moves that lead to a
better solution?

-Feasible direction
- Along any given direction, the objective function can be
regarded as a function of a single variable.
"Given r € S C ET, avector d e E™ 18 a

feasible direction at x 1f there is an @ > 0
such that  + ad € 5 for all ., 0 < o < @

- A feasible direction is a good direction, if the objective
function is reduced along the direction.



How do we know we have attained

a minimum solution?
- First order necessary condition

¢ Proposition. Let S be a subset of E™ and let f
e 7' be a function on 5. If * is a relative
minimum point of f over S, then for any d € E™
that 15 a feasible direction at =*, we have
V(x*)d = 0.

¢ Corollary (Unconstrained case). Let S be a
subset of E™ and let f = C! be a function on S.
If " is a relative minimum point of f over § and
if " is an interior point of S, then V f{x") = 0.



Example 1

Example: Constrained problem:

min f(ry,Ta) =15 — T + T2 + T T2

8. t. 71,7220

Check if r* = [1/2, 0] satisfies the first-order
necessary condition or not.

Vfz)

—— [2:]:1 — 1+ Ta, 1+ Tl]|:‘r1=1fﬂ',fz=']

= V f(x*)d = 0 for all d with dy; = 0 (feasible
direction at x*).



Example 2

Example: Unconstrained problem:

min f(ry, Ta) = 1] — T17a + T3 — 379

(zlobal minimum 18 known at ry = 1, 15 = 2.
At this point,
Vflz)=|2x1 — T2, —11 + 213 — 3]
= [0,0]



Comments

- The necessary conditions in the pure unconstrained case
lead to a system of n equations in n unknowns.

- Is the condition a sufficient condition? Why?

- How about the condition of

V f(z*)d > 07



Proof of the proposition

If 3 a feasible direction d € E™ at =™ with V f(x")d
<0,then 3a >0 st rla)=z"+adc S with
0<a<a and

flz(a)) = f(z*) + Vf(z*)(z(a) — ") + O(a”)

= fiz*) + aVf(z*)d + O(a”)
< fl(x"), if e is sufficiently small.

This contradicts to the fact that =* is a local

minimum point of f over 5.



Corollary — Variational Inequalities

¢ Proposition: Let 5 C E™ be convex and
f:E™ = R be C'S). If r* is a relative
minimum point of f over 5, then x* 15 a
solution of the following variational inequality
problem:

Find ze€ 5
{FI} 5. L. {IF — I, ?I{I]} = ﬂ*.-
v el



Second order conditions

Proposition (Second-order necessary
conditions). Let § be a subset of E™ and let f ¢ 7
be a function on S. If £* 1= a relative minimum point
of f over 8, then for any d € E™ that 15 a feasible

direction at ©*, we have
(1) ¥ f{z*)d = 0.
(ii) if ¥V f(z* )d = 0, then :IT"C"E_;"[J:"}d = .

Proof:
Flx{a)) = fiz*) + 2(x{a) — )"V f(z*)(z{a) — =*) + O(a?)
= fiz*) + 2o d" V¥ f{z*)d + O{a™)




L
Example 3

Example: Constrained problem:

min f(x1,r2) = 1§ — 11 + T2 + T1T2

s.t. T1.79 =0

Check if z* = [1/2, 0] satisfies the second-order necessary

condition or not.
VIilx) |~ = [0, 3/2] , since V flz*)d = 3/2ds = 0
== da = 0

= dTV2f(r*)d = 242 = 0



Second order necessary condition

+ Proposition (Second-order necessary
conditions — unconstrained case). Let ©* be an
interior point of the set S, and suppose * 152
relative minimum point of f € C*. Then

(1} Vfiz*) =0
(1) F(z*) iz positive semidefinite.



Example 4

Example: Unconstrained problem:

min f(ry, Ta) = T3 — T1Ta + T3 — 372

(zlobal minimum is known at ry = 1, 15 = 2.
At this point,
Vflr)=|2xy — T2, —11 + 215 — 3]
= [0,0]
and F(r) is positive definite.




Example 5

Example: Constrained problem:

min f(r1,r2) =} — rxe + 213

g. t. Ty.,19 =10

* = [6, 9] is a solution to the first-order necessary

condition:
Vfiz) |z= [3xF — 2x172, —xT + 4x2] =10

But, r* does not satisfy the second-order necessary
condition,

bry — 2z =211 15 —12
B = |.':"' —

%1, 4 —12 4




L
Second order sufficient condition

« Proposition (Second-order sufficient conditions
— unconstrained case). Let f € C? be a function
on a region in which the point =* 15 an interior point.
Suppose 1n addition that
(1) Vfiz") =0
(11) F(z*) is positive definite.

Then =* 15 a stnctly relative mimmum point of f.



Example 6
Min f(z)=312'—22° 4 Lo* 62 + 1
5. t. 0<z<4,
fixy|[
18 i i i 1 X




L
Continue

e First-order information:
fiix)==2"—62"+1lx—6 = (z— 1)z —2)(x — 3).
F0)y=—6, F(1) =fF(2)=F(3)=0, F(4) =6.

e Second-order information:
f(xr) = 3x* — 12z + 11
= (1) =0, F9U2) <0, F(3) > 0.

By checking the lst-order necessary conditions,
only =1, r = 2 and r = 3 are satisfied.

By checking the 2Znd-order necessary conditions,
only ©* = 1 and r = 3 are satisfied.

By checking the 2nd-order sufficient conditions,
we know =* = 1 or 3 with f(x*) = —1.25.



Convex functions - definition

e Let {2 E™ be a convex set and

f 81— R be a real-valued function. Then f
15 convex on 2, if

floz! + (1 —a)z?) < af(z')+ (1 - a)f(z®)

vl r? e and a e [0,1].

Moreover, f 1s strictly convex on {2, if
floaz! + (1 —a)z?) < af(zh) + (1 — a)f(z?)

Vel Z£x?, rl2*ec @ and ae(0,1).



Concave functions

e 7:1— R is (strictly) concave on £}, if
f = —g is (strictly) convex on €.



Graph and epigraph of a function

e Let {2 C E™ and f:40) — R .
The graph of f is

gra(f) = {(xr,2) E™ | e  and

fix) = =}
The epigraph of [ is

epi(f) = {(x,z) € E™*! |z € O and
flx) < =}

= epd ()




Set based definition of convex functions

- Definition

e A function f:Q C E™ — R is convex if
epi( f) is a convex subset of E™.

¢ Theorem:

For a convex function f. if each point
gral f) is an extreme point of epi( f), then the

function f 1= strictly convex.



L
Question

Let f:Q C E™ — R be convex and f < () .
For =% € €, what’s the supporting hyperplane of
epi(f) at (=% f(z"))

F)
f':xl:-} ______________ v
:.-‘
A *
av = b with v=
Y= W fm



L
Basic property - 1

e Overestimate by two-point information

. Jix}
.-I--'
-
-
™ = .
* "r'
", | 1
\q T I
I
e ! !
I -1 | I
| | |
|

I | !

I I I:l. x
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Basic property - 2

¢ Theorem:

Let f be a convex function on a convex set
QC E™.

Then
O air') <3 ai flz)
i=1 =1

vr'e Q, o e[0,1] and Y, a;=1
(Jensen's inequality)



Basic property - 3

¢ Theorem:

Let f € ¢!, Then f is convex on a convex set
0 cC E™ if, and only if,

fly) =2 flz)+Vflz)(y—=z), Yz,yec

(underestimate by one-point information)



D
Proof

(=) If fis convex, then for =,y € 2,
floy+(l—a)z) < af(y)+(1-a)f(z), Ya £ [0,1]

For o £ 0,
flz+aly —=x)) — fir)

Ll

< fly) — flx)

As av — 0, we have

Vilziy—=) = fly) — flz)



Proof

(«=) Assume that

fly) z flz)+Vflx)y—=x), Vr,yeh
Given ', z° £ 2 , and any a < [0, 1].
Consider # =az' + (1 —a)z®, then
flz') = f(z)+Vf(z)(x" — =)

fl£) = f(z)+Vf(z)(z" - 1)
Multiplying the first by @ and the second by
1 — & and adding up, we have

af(x!)+(1-a) f(x?) > f()+V f(2)(Gx +(1-a)r2—3)

= flaz! + (1 —a)?) + V F(z)(0)
= flaz! + (1 - a)=?)



Basic properties - 4 and 5

¢ Theorem:

Let 2 C E™ be aconvex set, fi,fo: 02— R
be convex funections.

Then (i) fi + fo is convex on (2
(ii) Af; isconvexon 2, ¥ 3 >0

¢ Theorem:

Let f be a convex function on a convex set
1 C E™. Then the set

I. 2 {r e Q| f(r) < ¢} is convex, ¥ e € R.



L
Basic property - 6

¢ Theorem:

Let feC? and 2 C E™ is convex with
int(?) # ¢@. Then f is convex on €2, if and

only if, the Hessian matrix F' 18 positive

semidefinite over ().



Proof

By Tavlor's Theorem,
fly) = flz)+Vf(z)(y—x)

+ 32 Pz +aly-2)y-2)

for some a € [0, 1].



Additional properties

¢« Theorem:
Let 5 C E™ be convex and f: 5 — K.

Then f is (strictly) convex if, and only if,

gls) = f(z° + ad) is (strietly) convex on
I2£{scR|x°+sdec S} for any given
'€ Sand d € E™

¢ Theorem:
Let f be (strictly) convex on S < E™ and
r = My + b iz an affine transformation from
E™ to E™. Then g(y) = f(My+ b) is
(strictly) convex on {y € E™ ‘ My+be S},
if M has full rank.




Additional properties

¢ Theorem:
Let f;, 7=1,...,p, be convex on § C E"
o
and a; > 0. Then f = % «;f; is convex on

j=1
5. In addition, if J i such that f; 18 strictly

P
convex on S and a; = 0, then f = % a;f; is
=1

strictly convex on 5.



Additional properties

« Theorem:
Let f;, 7=1,2,..., be convex on 5§ C E™.

If lim f;(x) exists for each x € S, then
J—= o

flz) £ lim f;(x) is convex on S.
[ —

o Theorem:
Let ©2 be an index set and { fu | we 2} be a
family of convex funections on 5 < E™.

Then, f(x) = sup fw(r) is convex on
Erir=1¥.

{r € 8| sup fu(r) < +oc}. In addition, if 0
weLe

12 finite and f,, 18 strictly convex for each
w < L}, then [ is strictly convex on 5.



Additional properties

¢ Theorem:

Let fi be convex on 5y C E™ and fs be
convex and non-decreasing on a set
T = f1(5;). Then the composition function

fae fi (z) = fal fi(z) ) is convex on S.
In addition, if fy is strictly convex on 5 and
fa 18 increasing, then fo o fy is strietly convex

on 5.



Minimization of convex functions

¢ Theorem:
Let f be a convex function defined on the convex

set 5. Then any relative mimmum of f 15 a

global mimmum and the set T where [ achieves

Its minimum 18 Convex.



Proof

(1) If x™ £ £} is a local minimum and 3 y € {2
with f(y) < f(z*), then

flay+(l1—a)z*) < af(y)+ (1 —a) f(z*) < f(z*)
for a = (0, 1)
This contradicts to the fact that =* 15 a local

T T,
(#1) T = {z | f(z) < f(z"), =} is obviously

COITNYEX.
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Sufficient and necessary conditions

¢ For convex functions, the first order necessary
condition 18 also a sufficient condition.

¢ Theorem:

Let f € C! be convex on a convex set
QCE™. Ifdr* €1}, s.t.

Vilz*)ly—z*) =0, ¥ye

then r* 1s a global minmimum of f over {2



Proof

Proof: Since

fly) = fl2®)+V ) (y—=") = flz7), Vy el

and any y € {1 can be reached from r* along

a feasible direction y — x*.



Example

¢ Example: Check the convexity of the following
optimization problem and find its (global)

minimum.
min f(r1, Tz r3) = 4r] + 3r3 + 5r3 + 6112
4+ri17r3 — AT — 2719



Maximization of convex functions

¢ Theorem:

Let f be a convex function defined on the
bounded, closed convex set 0 C E™ .V If f

achieves global maximum on {1, then one

maximizer falls in bdry ((2).



Proof

Assume r* € {1 15 a global maximizer of f. If
r* 15 not a boundary point of {2, then

A !, r* € bdry(1)
5.t.
r* = az! + (1 — a)z? for some a € (0,1)
By convexity of f,
flz*) < af(z') + (1 - a)f(z7)
< max {flfﬂll]yﬂf]}

Therefore either ' or z° is a global
mAaximizer.



Non-differentiable convex functions

- Where iIs the first order information?
- subgradient and subdifferential




Subgradient and subdifferential

-Definition
A vector vy is said to be a subgradient of a convex function
f (over a set S) at a point = if

f(z) = f(z")+{y,z—2"), vz € S

-Definition
The set of all subgradients of f at z" iis called the
subdifferential of f at " and is denoted by

0f(c") = {y € E" | f(z) > f(z’)+{y,z—2), Yz € S}



Properties
1. The graph of the affine function

h(x) = f(z")+(y,2—2")
IS a non-vertical supporting hyperplane to the convex set
epi(f) at the point of ( zY, (=) ).

2. The subdifferential set af(z") is closed and convex.

3. 8f(z") can be empty, singleton, or a set with infinitely
many elements. When it is not empty, f is said to be
subdifferentiable at =Y.

4. Vf(z®) € 8f(z°) if f is differentiable at zV.

IVf(z")} =af(x") if f is convex and
differentiable at =% € int(S).



Examples
- In R, f(x) = |x| is subdifferentiable at every point and
of (0)=1[-1,1].

- In  E™, the Euclidean norm f(x) = ||x|| is subdifferentiable
at every point and f (0) consists of all the vectors y such

that
IX|| = <y, x> forallx.

This means the Euclidean unit ball !



Elementary Solution Methods

* Two elementary solution methods for the
unconstrained optimization problem

Minimize f(x) for x € E™
1. First order information based

Gradient descent method
(Steepest decent method)

2. Second order information based
Newton’s method
(Newton-Raphson method)



D
Gradient Decent Method

- Motivation:
- Negative gradient direction is the steepest decent
direction to reduce the function value.
- Gradient Decent Method
1. Start from a guess point x, € E™ (or §) and set k = 0.
2. At iterate x;, move along the negative gradient
direction with an appropriate step size y;, > 0

to generate the next iterate
X1 = Xk — Vi V f(x)]"
andresetk « k+1
3. Returnto 2 until x;,.; = x;,



L
Newton’s Method

- Motivation — one variable
f(x):E' > Rand f € C?

minyeg f(x)
- At a point x;, € E', make the 2" order Taylor
expansion of f

FO+ 0 = FOo) + /Gt + 5 Gre?

- If f""(x;,) = 0, then the quadratic approximation is
a convex function of variable t € R, and its
minimum can be found by setting the derivative to
be 0.



D
Newton’s Method

d 1
0= I (f Ceg) + f'(xg) + Ef”(xk)tz
= f'(x) + [ ()t

- The minimum is achieved at ¢t = — 2%
[ (xgk)
Hence, we take
fr(xg)

X = Xe V0= X = e



L
Newton’s Method

- Extension to multi-variable
f(x):E®">Rand f € C?

min f(x)

XEEM
- Newton step

Xir1 = X —F ()71 [Vf(x)]"
- Newton’s Method
1. Start from a guess point x, € E™ (or S), and
set k = 0.
2. At iterate x,, take a Newton step to generate
the next iterate x;,,,, and reset k « k + 1
3. Return to 2 until x;,,; = x4,



L
Damped Newton's Method

- Replace the Newton step
Xp+1 = X —F(x )7t [VF(x)]"
by a modified Newton step
Xp+1 = X =Y F(x) 7P [V (x)]"
for y € (0,1]
where y is taken to satisfy the \Wolfe conditions or
Armijio’s condition.



L
Performance

1. Newton’s method is not necessarily convergent.

2. When it converges, it may converge to a local
minimum, or a saddle point.
3. Depends on the existence and computations of the
inverse of Hessian.
4. Convergence result:
When f is strongly convex with Lipschitz Hessian,
provided that x is close enough to the minimizer x~,
the Newton’s method converges to the minimizer in a

quadratic rate, i.e., ||x1; — x| < illxk —x*|I7,Vk >0



Comments

- Newton step takes a “conditioned” negative gradient direction,
when the second-order information is available.

- When it works, the Newton’s method take “more computational
efforts” to determine a “better direction” that
may move in a “more straight-forward” path to reach the
destination.

See gradient decent method
vs. Newton’s method

Xo

https://en.wikipedia.org/wiki/File:Newton _optimization_vs grad_descent.svg
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