LECTURE 5: CONSTRAINED
OPTIMIZATION - INTRODUCTION

1. Basic terminologies
2. KKT conditions — motivation
3. Background knowledge



Constrained optimization

- General form: Short form:
minimize fiz)
s.t. ] minimize  f(z)

) =0 st hiz) =0

hm(z) =10 + functional constraints Q{I} E- 0

gl{r_]l <0 [E:xplicit} T E ﬂ.—

where h(r) = (hy(z),-- ,hm{I}I}IT and
)<
e olz) = ().~ aplo)"

€ C E™, (set/implicit constraints)

wherem < n and f, by, g5 € CF (most likely k = 1
or 2).



Basic terminologies

- Definition:

r & {1 is a feasible solution (feasible point) if
hix) =0 and g(x) < 0.

F={reE"|hiz)=0, g(r) <0,rc 01} is
the feasible domain (feasible solution set).

- Definition:

Let T € 5. If g;(T) = 0, then the constraint
gi(xr) <0 is active at T. If g;(T) < 0, then

the constraint is inactive at r.




Property of active sets

- Observation Let 7€ % and J(2) = {j| g;(2) =0, j = 1,
N -+, p}. Then there exists a neighborhood
f N{z) of 7 such that

Jr)CJE), YreFnN().

z %_ This means that at a feasible point near 7, we
85(x)=0 don't need to worry about those inactive
AN 8,(x)=0 constraints at T. Therefore, we say that the

active constraints at T play no role in
optimization around I.



Question

(ziven a constrained optimirzation problem.
we all heard about “Lagrange mualtipliers.”™
“Lagrangian method,” *RK-K-T conditions.,”
“Lagrangian duaal,” etc.

In particular, we may know something like
(1) Iz, p) = flz)+ X hiz) + p g(z),
with Ae E™, peEYL;
(2)
V.l(r*) 2 Vi(z*)+ AT Vh(z )+ Vg(z*) =0,

T

prgl®)=0;  How do these concepts play together to form
(3) L(z*) 2 F(z*) + ATH(z*) + uTG(z*) . the main body of constrained optimization?



Necessary conditions for constrained optimization

- More precisely, we have
Theorem: ( K-K-T Conditions)

maximize ~ f(z) Let =* be a relative minimum point for
it h(z) =0 (NLP) that is a regular point. Then 3 a
veetor A € E™ and a vector p € EY stt.
(NLP) glz) <0
Vf(z*) £ X'Vh(r*) + p'Vg(2*) =0
pep (] ) £
u'g(z*) =0.

- But, Why? How?



Intuition and speculation

- (I-a) NLP with one equality constraint

minimize  f(ry,T2) £ 27 — 2o + 1 1 For I.::(':')?
s.1. !
hi(ry,m2) =23 +23-1=0 Vf(z*) = (221, -1) |2»= (0, -1),
re & f? Vhy(z*) = (224,215) |.= (0, 2),
Vi(z*) + 3Vhi(z*) =0.

2. Since the equality constraint can be written
Aas

hi(x) 2 —hi(z) = -2 —3234+1=0
and

Vhi(z*) = —Vhy(z*) = (0,-2), we have

Vf(r*) — %w‘:l (z*) = 0.

= Vf(z*)+MVhy(z*) = 0, for some \; € R.




(I-a) - continue

3.

by

For z* = ( 1 )1 this is a local maximum point.
T2

V() = (221, —1) [z-= (V3,-1)
Vhy(T*) = (271, 279) | o= (V3,-1)
and

Vf(z*) - Vh(Z*) =0,

= necessary condition only !

Note that % is not a convex set while f(z) is
convex on E2.



L
(I-b) NLP with two equality constraints

o A D o

mMnmEe I)=r —I 1 =
flz) =2y — 22 + 1. For :r:1=( 352)?

a.t. :

vf'::"—l:l =2z, 1) |2 = (ﬁ1 —1],
Vhi(z!) = (221, 222) | = [ﬂ?v‘ﬁ),} linearly

hy(z)2ri+23-1=0
ha(z) 2 29 — 2 =0
re 12 E?

Vha(x*) = (0,1) |z2= (0,1). independent
We have
VA )+ (—1D)Vh (2 +(1+vV2)Vha(z') = 0,

or

V(z')+(1)Vh () +(-1-v2)Vhy(z') =0,

ar

Vf(z')+(=1)Vhi(z')+(-1-v2)Vha(z') = 0,

ar

Vf(z') + (1)Vhy(z') + (1 + v2)Vha(z') = 0.

¥Z
Z

=2
2, Sinﬁlarresultshnldfnrmzz( 2 )



(I-c) NLP with multiple equality constraints

- General form (in guess)

Vfiz*) + }T?h(f} =4

o

E MiVhi(z*)
=1

where A & E™,

- Observations: For inequality constraints:

1. Notice that th te o : .
ollee € system 2. If we know which inequality constraints are

Vi) + MVh(z)=0 inactive, then the problem becomes much
*) h(z) =0 simpler.

has n + m variables satisfying n +m 3. HoWw to solve the system (=) 7
equations, that uniquely determines x*.



(1l-a) NLP with one inequality constraints

minimize f(r) 2 7 — 22+ 1

8.1.
gi(z) 2z +r3-1<0
TeN=E2
1. For o* — ( f )? 2. Note that
1
(i) g1(z) < 04 Galz) = —glz) <0,

v.ﬂmt} = {D: _1:]1-
Vg, (z*) = (0,2), (ii) Both f on E* and F are convex,

Vf(z*)+ 1V (z*) = 0.

4. Vgi1{x*) has to be in the opposite direction of
0 ) Vf(z*), e, 3 X =0 st
1

3. For i*z( 1

Vir*)+ Vg (x*) =0.

?f(f ) = (D:_l}! If not, then Vg (x*) and V f(z*) are on the

V(%) = (0,-2), same side, then we can move along —WV g (x*)
= Vf(3*) + MV (3*) £0 for any A, > 0. from r* to keep feasibility while we reduce the
objective value. (- Vg (r*) and — Vf(r*)
points to the same direction !! )



(1I-b) NLP with two inequality constraints

minimize f(r) = 2] — 10 + 1

8.1,

1.

2,

gi(z) 2 i +13-1<0
5’2(1’}%32—1‘;—520

rel2 E?

0
For m*=(:é_§),

Vf(z*) = (2x1,1) [z-= (0, -1),
?EI{E 'J {21172:"-2 |:|: {D "h"'l{_:l'.'
?gﬂ{ﬂ: 'J {D1-1} |i' - I:'l.- 1}5

VI z*) + (0)Vg(z*) + (1)Vga(z®) = 0.

MNotice that
g1(r) < 0 is inactive at z*.




(1I-b) - Continue

3. To get two active inequality constraints at an
optimal solution, we consider

ga(z) & -2y — 22+ 1<0
and
f@)2-f(z)=-2} + 23 -1.
4. FhI Itz ( I' ):‘
0
Ff[_'[.] - [—EI]” |1....: [_ﬂ!”!

Vagi(z*) = (221, 223) 2= (2,0), linearly
Vgalr*) = (-1, -1) [z.=(-1,-1), | independent

Vf(z*)+ 3V (2*] + (1)Vgy(2®) = 0.



(1I-c) NLP with multiple inequality

constraints
- General form (in guess)

VvV F(x*) + PT?g{ﬂ:*j =10

=

B
_TE1 pyVgyle*)

where p € ET and
iy =0 if gi(z*) < 0.



(11l-a) NLP with one equality and one
Inequality constraints

minimize f(r) = ] — 10+ 1
8.L.
hy(z) 2 —2f —z3+1=0
5’1{1’}212—%—5 < 0
reN £ E2

For £*=(%E)
1;_'5 i

vaI*} - {EIh _1} |.':"'= {‘h@: _1:]1'

Vh(z*) = (—21;, —225) |- = (-2, —V2), linearly
vgl{:r*} = [D1 1]?

independent

Vf(z*) + (1Vhi(2*) + (1 + V2)Vga(z*) = 0.



L
(111-b) NLP with multiple equality/inequality

constraints
- General form (in Guess)

Vf(z*) + M Vh(z*) + p'Vg(z*) =0

where A € E™, p e ET and
pp =0 if gi(z*) < 0.



Question

- After learning these facts, can our speculation be realized
In a mathematical theory?

- A story of G. B. Dantzig, J. von Neumann, A. W. Tucker,
H. W. Kuhn, W. Karush and F. John.



Historical development

- G.B. Dantzig visited John von Neumann in Princeton in May 1948.

- John von Neumann circulated privately a short typewritten note
“Discussion of Maximum Problem".

- HW. Kuhn and A.W. Tucker (1951) published “Nonlinear
Programming" in J. Neyman (ed.) “Proceeding of the 2nd Berkeley

Symposium on Mathematical Statistics and Probability,” UC Press,
Berkeley, 481-492.

- W. Karush (1939), “Minima of Functions of Several Variables with
Inequalities as Side Conditions," MS Thesis, Dept. of Mathematics,
University of Chicago.

- F. John (1948), “Extremum Problems with Inequalities as Subsidiary
Conditions,” Studies and Essays presented to R. Courant on his 60th
Birthday, Interscience, NY, 187-204.



Background knowledge

- Basic concepts from Taylor’s theorem:

1. Moving along the direction of —W f(T) { or
having a projected component of it ) will
reduce the objective function value.

2. To keep the feasibility of an eqguality
constraint f;(xr) = 0 around T, the moving
direction 4 & E™ has to satisfy that

“ho(T)yd = 0.

3. To keep the feasibility of an inequality
constraint g;{xr) << 0 around T, the moving
direction « & E™ better stayvs on the same
side of —Vg;(x) (or having a projected
component of it).



Implications

1. Key idea of necessary conditions: 5. For equality constraints,

~Vi(E) =) AVh(z), MER
* All feasible directions at 7 are not good i

direction for improvement.” (i.e., (Because Vh;(z)"dy =0.)

?f(T)Tdf >0, For inequality constraints,

Equivalently, no easible direction at V@ =2 kv @), #y20
AT

mikes ?f (I] df <01 (Because dy stays on the same side of

—Vyg;(T).)



Background knowledge

- Basic concepts from Linear Programming

o Definition:
Letac E" and f€ R Then a

H={reE"a"r-f=0}isa hyperplane
/ _A A /K
X
/

/
/




L
Observations

I Letg; € E®, i€ R, i=12--- . m,and 3. Given 7 € P, the feasible direction at

T falls in T £ {d € E™ | Ad = 0}.
A= Jmn, b= (1, )" Then SlacEr | ad=0)
PL{reE"|Az-b=0} isa
polyhedral set. S gt My
‘ 5 o, /
H”"x_ r |.r __*- 4
2. Given 7 € H, al is orthogonal to H at 7. VAN
The feasible directions at  falls in :
A H .
T2 {dcE"|afd=0}.
4. In a linear programming problem with m Also, we always assume that rank(A) = m
equality constraints, a vertex I is to start the study of LP. In this case,
“non-degenerated” if it is uniquely {ay, a0, ,am,} are linearly independent

determined by m equations. (at T and so as to other points).
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