LECTURE 6: CONSTRAINED
OPTIMIZATION — OPTIMALITY
CONDITIONS

1. Basic concepts
2. Necessary conditions — KKT conditions
3. Sufficient conditions



Constrained optimization

- General form: Short form:
minimize fiz)
s.t. ] minimize  f(z]

) =0 st hiz) =0

hm(z) =10 + functional constraints Q{I} E- 0

gl{r_]l <0 [E:xplicit} T E ﬂ.—

where hr) = (hy{z),-- ,hm{I}I}IT and
)<
e olz) = ().~ apfo)"

€ C E™, (set/implicit constraints)

wherem < n and f, by, g5 € CF (most likely k = 1
or 2).



Basic concepts

- Definition:

Let () = (h1(-),+++ , hm(-))" with

hi :E™ — R. Then § = {xr € E" | h(z) =0}
is a surface. When each h;(-) is a (C*)
smooth function, then S is a (C*) smooth

surface.
e For m=1,h = hy, y
Vi (x)"
o ¢ Observations:
X
-~ 8 1. Given T € §, Vh;(Z) is orthogonal to a
“tangent” plane of § at T for each i .
Vh (x)
Vs —— 2. The feasible directions at T falls in
. . T T(z) 2 {de E™ | Vh(T)d =0, i=1,2,--- ,m}.

Ve We may write
“Vhiz)d = 0" for “Vhi(£)d =0,i=1,--- ,m".



Basic concepts

- Definition
Let e S={rcE"|h(r)=0}. Then T is a
regular point if the gradient vectors
{(Vhi(x),--- ,Vhy(T)} are linearly
Independent.

e Observations:

1. Every point r € E™ s.t. hizx) =0 is
“relatively interior” to
S ={re E" | h(zx) = 0}.

2. When T is a regular point,
T(x) = {d € E™ | Vh(T)d = 0} is the
tangent plane at T with explicit geometric
meanings.



Basic concepts

- Definition
(i} A curve ¥ on a surface S is a set of points
x({t) € § continuously parameterized by ¢
over an interval [a,b] , ie.,
¥ ={r(the S|t ela,b] }.

(ii) ¥ is differentiable, if & 2 22 exists.

(iii) %" is twice differentiable, if
A d cdx(t)

i = 2 (—~) exists.

(iv) % passes through T € S, if 3t € (a,b) .
s.t. =(f) = T.

In this case, #(tf) is the derivative of ¥ at
.

(v) The tangent plane at ¥ S is the
collection of the derivatives at T of all
differentiable curves passing through 7.




Basic concepts

- Theorem:

Let T be a regular point of the surface
S£{re E" | h(x) =0}. Then the tangent
plane i1s equal to

T(x) = {de E™ | Vhi(z)d = 0}.

- Proof:
Luenberger P. 298.



First order necessary conditions

- NLP with equality constraints

- Theorem:
Let x* be a regular point of S = {r € E™ |
h{z) =0} and a local minimum (maximum)
point of f over 5. Then

Vf(z*)d =0
for all d € T(z*) = {d € E™ | Vh(z*)d = 0} .

- Proof:
Directly from Taylor's Theorem, or Luenberger P. 300.



First order necessary conditions

- Corollary: Let =* be a regular point of
S={reE"|hir) =0} and a local
minimum (maximum) point of f over S.
Then 3 A € E™ such that

V f(z*) + A Vh(z*) = 0.

- Proof:
CﬂnsidE_r thﬂ fﬂl'ﬂwf;g Lli' problem Since * 15 a regular point, the previous theorem
“1";_1:"“ _v j-:[ ':i }:I:= o implies that the dual problem is feasible. Hence
de Em JAeE™, st
and its dual problem vf{f;] + }._thlif} — 1,
e ohet A = v

Ae E™,



Observations
L. We may define 2. The necessary conditions can be expressed
{(z,2) = f(z) + X"h(x) s
as the Lagrangian associated with the V.l(z,)) (= Vf(z) + N'Vh(z)) =0,
constrained optimization problem. And we oo (= h []
may call \ the Lagrange /Lagrangian iz ) (=hz)) =0,
vector and A; the Lagrange/Lagrangian which is a system of n + m variables

multiplier associated with h;(z) = 0. satisfying n + m equations.



First order necessary conditions

- NLP with equality and inequality constraints

maximize flx)
s.1. hiz)=0
(NLP) g(xr) =0
r e BT

- Definition

Let & be a feasible solution and J(#) be the
index set of all active (inequality) constraints.

T is said to be a regular point if the gradient
vectors Vhi(x), i =1,2,--- ,m, and Vg;(T),

j e J(x), are linearly independent.



Main theorem

- Theorem (KKT Conditions)

Let * be a relative minimum point for

(NLP) that is a regular point. Then 3 a
vector A € E™ and a vector p € ET s.t.

V(z*) + ATVh(z*) + pTVg(z*) =0
p'g(z*) =0.

(+)



Proof

Since r* is known, we know each inequality W.L.O.G. we may assume that Vg;(x") £ 0,
constraint is active or inactive. From the v j€.J . Remember r* is a regular point. A
first-order necessary conditions for equality negative direction of the right hand side vector
constraints, 3 AT e E™ and pieR, je J(z*), projected onto the null space of {Vh;(z*)} leads
such that to a direction d that has components in

—WVygi(z*) (7 € J) and -V f(z") only.
Vi(z")+ X Vh(z')+ Y pVgilz") =0.

jE J(x*) In this case, moving along d from =* will
Taking pj =0 for j & J(z") leads to (+) except (1) reduce the value in f,
that u; € R for j € J{z*). (2) reduce the value in g;,j € .J,
(3) remain the same value in ki, i=1,--- ,m.
Let J* = {j € J(z*), p; 2 0} and
I — {j‘ e J(z*), B < ﬂ}. This contradicts to the fact that =* is a local
minimum point. Henee J = ¢ and
If.J” £ ¢, then we have p; =0, ¥je

Vi HATVR( )+ ) piVgilat) = ) (-mi)Vas(e)
jert jed-



L
Common terminologies

2. Any point 7€ E™ for which 3 (A pr) ..
}primal feasibility ( PF ) (2, 1) satisfies K-K-T conditions is
called & K-K-T point.

feasibility 9. 116 Tequirement of * 1* s a regular

(DF) point” s also called “Independence
¢l = O eomplmentary slakess () vint Oualifeation” (100), Ther
are many kimds of constramt qualification
(CQ)) conditions that relaxes (ICQ).

Vi) + ilﬁ'ﬁi{f) + gﬁjvﬁj{f} 0 l dual

}-.-iER:- F'.T:E'D

(PF) + (DF) + (CS) = K-K-T conditions.



Constraint qualifications (CQ)

- Slater’s condition (Slater’s CQ) Other CQs

(i) Each g; is continuous and pseudo convex at
AT ICQ Slater CQ
(i) Each h; is quasi convex, quasi concave, and Cottle CQ
continuous differentiable at z. o
Kuhn-Tucker CQ)
(iii) {Vhi(Z)} are linearly independent. ]
Abadie CQ

(iv) 3z st. giz) <0,V je J(z), and
hi(z) =0, ¥ 1.



Second order necessary conditions

- Observations:

L. Following the corollary, at =* there exists ) The second-order necessary conditions for
ade E™ st Vf(z*)+ ATVh(z*) =0,

Notice that z* is regular and mmeonstrained optimization problems
T(r*)={y € E™ | Vh(r*)y=0}is a I'B'I[l].iIE' that

subspace of E".

Consider the problem of minimizing ﬁ'([]) — F(It + 1]] 4 ATH(I* + ﬂ] A L(It]
f(y) £ fz* +y) +ATh(z* +y) over T(z*).

We know for sure that 0 is a local he positive semidefinite on T(z*), ie.,
minimizer for this unconstrained problem

in T'(x*) space if and only if * is a loecal yTL(ﬂ:t]y }ﬂ1 HHET(I‘]

minimizer of f(x) over
S={zc E™|h(z) =0}



D
Result 1

Theorem (2nd Order Necessary Conditions /
Equality Constralnts)

Let * be a local minimum point of f over
S={re E" | hi(x) =0} and x* is a regular
point. Then 3 a A & E™ s.t.

VIlr*)+ ATVh(z*) =0
and the matrix
L(x*) = F(z*)+ AT H(z*)
i= positive semidefinite on
T(z*) = {y | Vh(z")y = 0}

Proof: (Luenberger P. 306-307 has an

equivalent derivation.)



D
Result 2

e Theorem (2nd-order Wecessary Conditions /
Equality and Imeqguality Conditions )

Let f.g.h = €% and r* be a regular point of
F ={re E™| hix) =0, g(x) < 0}. If x* is
a local minimizer of f over % |, then
1A e E™, pe EY, such that

Vlx*) + ATVh(z*) + pt Vg(xz*) =0,
utg(x*) = 0.
and
L(xz*) = F(x*) + ATH(x*) + pT G(x*)
is positive semidefinite on the tangent
subspace of all the active constraints at x*
Proof: Direct consequence of the same logic

used in the previous theorem.



Sufficient conditions for optimality

- Key idea:
Following the 2nd-order sufficient conditions
for unconstrained optimization problem will lead to an
answer to the constrained case.



D
Result 1

e Theorem: (2nd-order Sufficient Conditions /
Equality Constraints)

Let x* € E™ and A & E™ s.t.

hix*) =0

V f(x*) + AT h(z*) = 0.
If L{x*) = F(x*) + AT H(x*) is positive
definite on T(x*) = {y € E™ | Vhi(xz*)y = 0},

then x* is a strict local minimum point of f
OVer

S = {r € E™| hiz) = 0}.

Proof:
Luenberger P. 307 proved explicitly by contradiction.



Observations

1. When inequality constraints involved, the 2 Note that J (::L‘*} =J {I*] under the

index set J(z*) = {j | gj(z*) = 0} and “nondegeneracy assumption”.

Vi(z*)+ MVh(z*)+ yp"Vg(z*) =0

with A € E™ and p; > 0, ¥Vj € J(z*). 3. The 2nd-order sufficient conditions work

If p; =0, then g; actually plays no role on J(r*) to avoid degeneracy.
for an active constraint. In this case, we

call it a “degenerate inequality 7 to begin

with. We define

J(2%) = {j| g;(z*) =0 and i, >0}

to index those “nondegenerate”
inequalities with positive Lagrange
multipliers.



D
Result 2

Theorem: (2nd-order Sufficlent Conditions
JEquality and Inequality Conditions )

Let f.ghe C? and z* € F. If32 A E™,
p e EY, st

Vix*) 4+ A Vh(z*) 4+ pTVg(x*) =0,
utg(z*) =0,
and the Hessian matrix

L(z*) = F(x*) + AT H(z*) + u" G(x*)

is positive definite on the subspace
T(z*) ={y € E™ | Vh(z" )y = 0,
Vgi(z*)y =0, ¥j € J(z*)},

then r* is a strict relative minimizer of f over

F.



Observations

1. T(z*) C T(z*)
2. T(z*) = T(z*) iff every active inequality

constramt at z* 18 nondegenerate.

Corollary:

Let f be strictly convex, g; convex, and r* a
K-K-T point of minimizing f{z) over

{x e E™ | g(x) < 0}. Then x* is a global
minimizer,



Interesting questions

Consider the following two problems:
Min  fiz) Min  f(r.s) = f(z)
= t. Hl[I] < 0 8. L. .ﬁl{I,a‘}l égl{r}l-l—a? =0
(P) (Fy)
g;,-liI} < hglz,s) = grlz) + ai =0
T E E.-'_“' (z.2) € EnTE

It is clear that () and (FP:) are equivalent,
but (F;) has k inequality constraints and (Fs)
has k equality constraints.

Question 1: Why should we explicitly use ~ Question2:

" Can the (KKT) conditions of (P;) be derived
the {KKT] conditions of fpl)? for the (KKT) conditions of (FPy)7?




Answer to question 1

Question 1: Why should we explicitly use
the (KKT) conditions of ()7

Example:
Min 7 J 1. |
(A) s t. X —1=<0
IL!'{iII IE —|— I] - 32 .'. - ..I "
(=) . i ,
8. t-- I - ]_ + = _— D e 1| e
Necessary Conditions [ﬂ [ﬂ
A = s AER
(Fa) 0 25
2r +pul(2z)=0 , p20 R
. { (=" —1) =0
2r(1 +p)=0, o >0 2Aa =0 = =0 or =z=4l
(1+ p) B2 P2t e L
= r=0andp="0

raal soluclons false solotlons



Answer to question 1

Sufficient Conditions
(F2)

{Pl] Fx,8) = : I:I),H'[::lz__al}z(2 D)_
0 0 0 2
Fiz)=(2), 6lz) = 2). Atr=0, s =21l and A=0

Atr=0andp =10,

Flr)+pG(zr)=(2) >0 (pd)

(P1) is a convex programming problem, (KKT)

2 0
F(r,s)+ AH(x,s) = (ps.d.)
0o o
Atr=21, a=0and A = —1

conditions are sufficient for optimality. F(x,a) + AH (z, 1)

2 0 2 0 ] ]

= ( ) —_ ( ) = ( ) [:I'.I.-H-.-I:|.:|
o O 0o =2 o -2

{F2) is not a convex programming problem,

{[{]{T}I conditions are not sufficient for
optimality.



Answer to question 2

Question2:

Can the (KKT) conditions of (P;) be derived

for the (KKT) conditions of (Fs)?

Answer:

(KKT) conditions of (P ):

Vfiz) +§:1Fjvg;r{1} =0 , g =0
pigi(z) =0
(KKT) conditions of { Py):
Vflr, s) + i AVhi(z,8) =0 . AjeR
B hilz,s) =0
Notice that for prohlem (Ps),

Vf(z,s) = (Vf(x),0)
vh:jf:if,.ﬂ} - [ vgj[ILD:u"' 5251?‘}1"' 1n}
;‘*.lj{f.ﬂj:] =0, j=12--- |k

— If Aj = 0, then s; = 0 and, consequently,
hj(z,s) = gj(r) = 0 and Ajg;(z) = 0.
— If A; =0, then A;g;(r) = 0 is obvious.

W.LOG wesay Ay < 0and Ag,---  Ap 20
and r is a strick local minimum solution.

Then

(Vgi(z))
- (Vo,(2))
Vi@ 5 o
. _ 0
0 +jz=2 Aj 2, A |
| \ 0 )
\ 0
In other words,

B

0 =0
~V@) + Y X(-Vg;(2)) = —(-X)Va (=)

=2



Answer to question 2

Note that g;(x) < 0, moving along the
direction of —V gy (x) will reduce g,(x),
reduce or retain g;(x), j=2,--- .k, and
reduce f{x). This contradicts the assumption
that r 18 a local minimizer. Hence A; = 0 for
j=12 --- k. Moreover, we know that
Ajgilz) = 0. Therefore, we can choose

i = Aj, tor j =1,2,--- , k to satisfy the
(KKT) conditions for ().



	Lecture 8: constrained Optimization – Optimality conditions
	Constrained optimization
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	First order necessary conditions
	First order necessary conditions
	Observations
	First order necessary conditions
	Main theorem
	Proof
	Common terminologies
	Constraint qualifications (CQ)
	Second order necessary conditions
	Result 1
	Result 2
	Sufficient conditions for optimality
	Result 1
	Observations
	Result 2
	Observations
	Interesting questions
	Answer to question 1
	Answer to question 1
	Answer to question 2
	Answer to question 2

