LECTURE 6: CONSTRAINED OPTIMIZATION – OPTIMALITY **CONDITIONS**

- 1. Basic concepts
- 2. Necessary conditions KKT conditions
- 3. Sufficient conditions

Constrained optimization

• General form: Short form:

minimize $f(x)$ minimize $f(x)$ s.t. $\left\{ \begin{aligned} h_1(x) &= 0 \ &\hspace{2cm} \vdots \ h_m(x) &= 0 \ &\hspace{2cm} \hline \ g_1(x) &\leq 0 \ &\hspace{2cm} \vdots \ g_p(x) &\leq 0 \end{aligned} \right. \hspace{1cm} \text{functional constraints}$ s.t $h(x) = 0$ $g(x) \leq 0$ $x \in \Omega,$ where $h(x) = (h_1(x), \dots, h_m(x))^T$ and $g(x) = (g_1(x), \dots, g_p(x))^T.$ $x \in \Omega \subset E^n$, (set/implicit constraints) where $m \leq n$ and $f, h_i, g_j \in C^k$ (most likely $k = 1$) or 2).

• Definition:

Let $h(\cdot) = (h_1(\cdot), \cdots, h_m(\cdot))^T$ with $h_i: E^n \to R$. Then $S \triangleq \{x \in E^n \mid h(x) = 0\}$ is a surface. When each $h_i(\cdot)$ is a (C^k) smooth function, then S is a (C^k) smooth surface.

• For
$$
m = 1, h = h_1
$$
,

• Observations:

- 1. Given $\bar{x} \in S$, $\nabla h_i(\bar{x})$ is orthogonal to a "tangent" plane of S at \bar{x} for each i .
- 2. The feasible directions at \bar{x} falls in $T(\bar{x}) \triangleq \{d \in E^n \mid \nabla h_i(\bar{x})d = 0, i = 1, 2, \cdots, m\}.$

We may write

$$
\text{``}\nabla h(\bar{x})d = 0\text{''} \text{ for ``}\nabla h_i(\bar{x})d = 0, i = 1, \cdots, m\text{''}.
$$

• Definition

Let $\bar{x} \in S \triangleq \{x \in E^n \mid h(x) = 0\}$. Then \bar{x} is a regular point if the gradient vectors $\{\nabla h_1(\bar{x}), \cdots, \nabla h_m(\bar{x})\}\$ are linearly independent.

- Observations:
	- 1. Every point $x \in E^n$ s.t. $h(x) = 0$ is "relatively interior" to $S = \{x \in E^n \mid h(x) = 0\}.$
	- 2. When \bar{x} is a regular point, $T(\bar{x}) \triangleq \{d \in E^n \mid \nabla h(\bar{x})d = 0\}$ is the tangent plane at \bar{x} with explicit geometric meanings.

- Definition
	- (i) A curve $\mathscr C$ on a surface S is a set of points $x(t) \in S$ continuously parameterized by t over an interval $[a, b]$, i.e., $\mathscr{C} = \{ x(t) \in S \mid t \in [a, b] \}.$

(ii) *C* is differentiable, if
$$
\dot{x} \triangleq \frac{dx(t)}{dt}
$$
 exists.

(iii) *C* is twice differentiable, if
$$
\ddot{x} \triangleq \frac{d}{dt}(\frac{dx(t)}{dt})
$$
 exists.

(iv) \mathscr{C} passes through $\bar{x} \in S$, if $\exists \bar{t} \in (a, b)$, s.t. $x(\bar{t}) = \bar{x}$.

> In this case, $\dot{x}(\bar{t})$ is the derivative of $\mathscr C$ at Ŧ.

(v) The tangent plane at $\bar{x} \in S$ is the collection of the derivatives at \bar{x} of all differentiable curves passing through \bar{x} .

• Theorem:

Let \bar{x} be a regular point of the surface $S \triangleq \{x \in E^n \mid h(x) = 0\}$. Then the tangent plane is equal to

 $T(\bar{x}) \triangleq \{d \in E^n \mid \nabla h(\bar{x})d = 0\}.$

• Proof:

Luenberger P. 298.

First order necessary conditions

- NLP with equality constraints
- Theorem:

Let x^* be a regular point of $S = \{x \in E^n \mid$

 $h(x) = 0$ and a local minimum (maximum) point of f over S . Then

$$
\nabla f(x^*)d=0
$$

for all $d \in T(x^*) = \{ d \in E^n \mid \nabla h(x^*)d = 0 \}$.

• Proof:

Directly from Taylor's Theorem, or Luenberger P. 300.

First order necessary conditions

• Corollary: Let x^* be a regular point of $S = \{x \in E^n \mid h(x) = 0\}$ and a local minimum (maximum) point of f over S . Then $\exists \lambda \in E^m$ such that

$$
\nabla f(x^*) + \lambda^T \nabla h(x^*) = 0.
$$

• Proof:

Consider the following LP problem minimize $-\nabla f(x^*)d$ $\nabla h(x^*)d=0$ s.t. $d \in E^m$

and its dual problem

maximize $\bf{0}$ s.t. $\nabla h(x^*)^T \lambda = -\nabla f(x^*)^T$ $\lambda \in E^m$.

Since x^* is a regular point, the previous theorem implies that the dual problem is feasible. Hence $\exists \lambda \in E^m$, s.t.

$$
\nabla f(x^*) + \lambda^T \nabla h(x^*) = 0.
$$

Observations

1. We may define

 $\ell(x,\lambda) \triangleq f(x) + \lambda^T h(x)$

as the Lagrangian associated with the constrained optimization problem. And we may call λ the Lagrange/Lagrangian vector and λ_i the Lagrange/Lagrangian multiplier associated with $h_i(x) = 0$.

2. The necessary conditions can be expressed 88

$$
\nabla_x \ell(x,\lambda) (= \nabla f(x) + \lambda^T \nabla h(x)) = 0,
$$

$$
\nabla_\lambda \ell(x,\lambda) (= h(x)) = 0,
$$

which is a system of $n + m$ variables satisfying $n + m$ equations.

First order necessary conditions

• NLP with equality and inequality constraints

• Definition

Let \bar{x} be a feasible solution and $J(\bar{x})$ be the index set of all active (inequality) constraints.

 \bar{x} is said to be a regular point if the gradient vectors $\nabla h_i(\bar{x}), i = 1, 2, \cdots, m$, and $\nabla g_j(\bar{x}),$ $j \in J(\bar{x})$, are linearly independent.

Main theorem

• Theorem (KKT Conditions)

Let x^* be a relative minimum point for (NLP) that is a regular point. Then \exists a vector $\lambda \in E^m$ and a vector $\mu \in E^p_+$ s.t.

$$
(*) \begin{cases} \nabla f(x^*) + \lambda^T \nabla h(x^*) + \mu^T \nabla g(x^*) = 0 \\ \nabla g(x^*) = 0. \n\end{cases}
$$

Proof

Since x^* is known, we know each inequality constraint is active or inactive. From the first order necessary conditions for equality constraints, $\exists \lambda^T \in E^m$ and $\mu_i \in R$, $j \in J(x^*)$, such that

$$
\nabla f(x^*) + \lambda^T \nabla h(x^*) + \sum_{j \in J(x^*)} \mu_j \nabla g_j(x^*) = 0.
$$

Taking $\mu_i = 0$ for $j \notin J(x^*)$ leads to (*) except that $\mu_j \in R$ for $j \in J(x^*)$.

Let $J^+ = \{j \in J(x^*), \mu_j \geq 0\}$ and $J^- = \{j \in J(x^*), \mu_i < 0\}.$

If $J^{-} \neq \phi$, then we have $\nabla f(x^*) + \lambda^T \nabla h(x^*) + \sum \ \mu_j \nabla g_j(x^*) = \ \sum \ (-\mu_j) \nabla g_j(x^*).$ $i \in J^+$

W.L.O.G. we may assume that $\nabla g_i(x^*) \neq 0$, $\forall j \in J^{-}$. Remember x^{*} is a regular point. A negative direction of the right hand side vector projected onto the null space of $\{\nabla h_i(x^*)\}$ leads to a direction d that has components in $-\nabla g_i(x^*)$ $(j \in J)$ and $-\nabla f(x^*)$ only.

In this case, moving along d from x^* will

- (1) reduce the value in f,
- (2) reduce the value in $g_i, j \in J$,
- (3) remain the same value in h_i , $i = 1, \dots, m$.

This contradicts to the fact that x^* is a local minimum point. Hence $J^{-} = \phi$ and $\mu_i \geq 0, \forall j \in J.$

Common terminologies

$$
h(x^*) = 0
$$

$$
g(x^*) \le 0
$$

$$
f
$$
 primal feasibility (PF)

1.

$$
\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla h_i(x^*) + \sum_{j=1}^p \mu_j \nabla g_j(x^*) = 0
$$
\n
$$
\lambda_i \in R, \ \mu_j \ge 0
$$
\n
$$
\begin{cases}\n\text{dual} \\
\text{feasibility} \\
\text{(DF)}\n\end{cases}
$$

 $\mu^T g(x^*) = 0$ } complementary slackness (CS).

 $(PF) + (DF) + (CS) = K - K$ r conditions.

- 2. Any point $\bar{x} \in E^n$ for which $\exists (\lambda, \mu)$ s.t. (\bar{x}, λ, μ) satisfies K-K-T conditions is called a K-K-T point.
	- 3. The requirement of " x^* is a regular point" is also called "Independence" Constraint Qualification" (ICQ). There are many kinds of constraint qualification (CQ) conditions that relaxes (ICQ) .

Constraint qualifications (CQ)

- Slater's condition (Slater's CQ) Other CQs
-

- (i) Each g_i is continuous and pseudo convex at $\bar{x}, j \in J(\bar{x}).$
- (ii) Each h_i is quasi convex, quasi concave, and continuous differentiable at \bar{x} .
- (iii) $\{\nabla h_i(\bar{x})\}$ are linearly independent.
- (iv) $\exists x \text{ s.t. } g_i(x) < 0, \forall j \in J(\bar{x})$, and $h_i(x)=0, \forall i.$

Second order necessary conditions

• Observations:

1. Following the corollary, at x^* there exists a $\lambda \in E^m$, s.t. $\nabla f(x^*) + \lambda^T \nabla h(x^*) = 0$. Notice that x^* is regular and $T(x^*) = \{y \in E^n \mid \nabla h(x^*)y = 0\}$ is a subspace of E^n .

Consider the problem of minimizing $f(y) \triangleq f(x^* + y) + \lambda^T h(x^* + y)$ over $T(x^*)$.

We know for sure that 0 is a local minimizer for this unconstrained problem in $T(x^*)$ space if and only if x^* is a local minimizer of $f(x)$ over $S = \{x \in E^n \mid h(x) = 0\}.$

2. The second-order necessary conditions for unconstrained optimization problems require that

$$
\tilde{F}(0) = F(x^* + 0) + \lambda^T H(x^* + 0) \triangleq L(x^*)
$$

be positive semidefinite on $T(x^*)$, i.e.,

 $y^T L(x^*)y \geq 0$, $\forall y \in T(x^*)$.

Result 1

Theorem (2nd Order Necessary Conditions / **Equality Constraints**)

Let x^* be a local minimum point of f over $S = \{x \in E^n \mid h(x) = 0\}$ and x^* is a regular point. Then $\exists a \lambda \in E^m$ s.t.

$$
\nabla f(x^*) + \lambda^T \nabla h(x^*) = 0
$$

and the matrix

$$
L(x^*) = F(x^*) + \lambda^T H(x^*)
$$

is positive semidefinite on

$$
T(x^*) \triangleq \{y \mid \nabla h(x^*)y = 0\}.
$$

Proof: (Luenberger P. 306 307 has an equivalent derivation.)

Result 2

• Theorem (2nd-order Necessary Conditions / Equality and Inequality Conditions)

Let $f, g, h \in C^2$ and x^* be a regular point of $\mathscr{F} = \{x \in E^n \mid h(x) = 0, g(x) \leq 0\}.$ If x^* is a local minimizer of f over $\mathscr F$, then $\exists \lambda \in E^m, \ \mu \in E^p_+,$ such that

$$
\nabla f(x^*) + \lambda^T \nabla h(x^*) + \mu^T \nabla g(x^*) = 0,
$$

$$
\mu^T g(x^*) = 0.
$$

and

$$
L(x^*) = F(x^*) + \lambda^T H(x^*) + \mu^T G(x^*)
$$

is positive semidefinite on the tangent subspace of all the active constraints at x^* **Proof:** Direct consequence of the same logic used in the previous theorem.

Sufficient conditions for optimality

• Key idea:

Following the 2nd-order sufficient conditions for unconstrained optimization problem will lead to an answer to the constrained case.

Result 1

• Theorem: (2nd-order Sufficient Conditions / Equality Constraints)

Let
$$
x^* \in E^n
$$
 and $\lambda \in E^m$ s.t.
\n
$$
\begin{cases}\nh(x^*) = 0 \\
\nabla f(x^*) + \lambda^T h(x^*) = 0.\n\end{cases}
$$

If $L(x^*) = F(x^*) + \lambda^T H(x^*)$ is positive definite on $T(x^*) = \{ y \in E^n \mid \nabla h(x^*)y = 0 \},\$ then x^* is a strict local minimum point of f over

$$
S=\{x\in E^n\mid h(x)=0\}.
$$

Proof:

Luenberger P. 307 proved explicitly by contradiction.

Observations

1. When inequality constraints involved, the index set $J(x^*) = \{j \mid g_i(x^*) = 0\}$ and

 $\nabla f(x^*) + \lambda^T \nabla h(x^*) + \mu^T \nabla g(x^*) = 0$

with $\lambda \in E^m$ and $\mu_i \geq 0$, $\forall j \in J(x^*)$.

If $\mu_i = 0$, then g_i actually plays no role for an active constraint. In this case, we call it a "degenerate inequality" to begin with. We define

 $J(x^*) = \{j \mid g_i(x^*) = 0 \text{ and } \mu_i > 0\}$

to index those "nondegenerate" inequalities with positive Lagrange multipliers.

- 2. Note that $J(x^*) = \bar{J}(x^*)$ under the "nondegeneracy assumption".
- 3. The 2nd-order sufficient conditions work on $J(x^*)$ to avoid degeneracy.

Result 2

Theorem: (2nd-order Sufficient Conditions) /Equality and Inequality Conditions)

Let $f, g, h \in C^2$ and $x^* \in \mathscr{F}$. If $\exists \lambda \in E^m$, $\mu \in E^{p}_{+}$, s.t. $\nabla f(x^*) + \lambda^T \nabla h(x^*) + \mu^T \nabla g(x^*) = 0,$ $\mu^T g(x^*) = 0,$

and the Hessian matrix

$$
L(x^*) = F(x^*) + \lambda^T H(x^*) + \mu^T G(x^*)
$$

is positive definite on the subspace

$$
\begin{aligned} \bar{T}(x^*) &= \{ y \in E^n \mid \nabla h(x^*)y = 0, \\ \nabla g_j(x^*)y &= 0, \ \forall j \in \bar{J}(x^*) \}, \end{aligned}
$$

then x^* is a strict relative minimizer of f over $\mathscr F.$

Observations

- 1. $T(x^*) \subset \overline{T}(x^*)$
- 2. $T(x^*) = T(x^*)$ iff every active inequality constraint at x^* is nondegenerate.

Corollary:

Let f be strictly convex, g_i convex, and x^* a K-K-T point of minimizing $f(x)$ over ${x \in Eⁿ | g(x) \le 0}$. Then x^* is a global minimizer.

Interesting questions

Consider the following two problems:

Min $\tilde{f}(x, s) = f(x)$ Min $f(x)$ s. t. $h_1(x, s) \triangleq g_1(x) + s_1^2 = 0$ s. t. $g_1(x) \leq 0$ (P_2) \mathbb{R}^2 (P_1) $h_k(x, s) \triangleq g_k(x) + s_k^2 = 0$ $g_k(x) \leq 0$ $(x,s) \in E^{n+k}$ $x \in E^n$

It is clear that (P_1) and (P_2) are equivalent, but (P_1) has k inequality constraints and (P_2) has k equality constraints.

Question 1: Why should we explicitly use the (KKT) conditions of (P_1) ?

Question2:

Can the (KKT) conditions of (P_1) be derived for the (KKT) conditions of (P_2) ?

Question 1: Why should we explicitly use the (KKT) conditions of (P_1) ?

Necessary Conditions

\n
$$
(P_1) \begin{cases}\n2x + \mu(2x) = 0, & \mu \ge 0 \\
\mu(x^2 - 1) = 0, & \mu \ge 0\n\end{cases}
$$
\n
$$
(P_2) \begin{cases}\n2x \\
0\n\end{cases} + \lambda \begin{bmatrix}\n2x \\
2s\n\end{bmatrix} = 0, & \lambda \in R
$$
\n
$$
x^2 + s^2 = 1
$$
\n
$$
\Rightarrow 2x(1 + \mu) = 0, \mu \ge 0
$$
\n
$$
\Rightarrow x = 0 \text{ and } \mu = 0.
$$
\nQ2x(1 + \mu) = 0, \mu \ge 0

\n
$$
\Rightarrow x = 0 \text{ and } \mu = 0.
$$
\nQ2x(1 + \mu) = 0, \mu \ge 0

\n
$$
\Rightarrow x = 0 \text{ and } \mu = 0.
$$
\nQ2x(1 + \mu) = 0, \mu \ge 0

\n
$$
\Rightarrow x = 0 \text{ and } \mu = 0.
$$
\nQ2x(1 + \mu) = 0, \mu \ge 0

\n
$$
\Rightarrow x = 0 \text{ and } \mu = 0.
$$
\nQ2x(1 + \mu) = 0, \mu \ge 0

\n
$$
\Rightarrow x = 0 \text{ and } \mu = 0.
$$
\nQ2x(1 + \mu) = 0, \mu \ge 0

\n
$$
\Rightarrow x = 0 \text{ and } \mu = 0.
$$

Sufficient Conditions

 (P_1) $F(x) = (2), G(x) = (2).$ At $x = 0$ and $\mu = 0$,

 $F(x) + \mu G(x) = (2) > 0$ (p.d.)

 (P_1) is a convex programming problem, (KKT) conditions are sufficient for optimality.

 (P_2)

$$
F(x,s) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, H(x,s) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.
$$

At $x = 0$, $s = \pm 1$ and $\lambda = 0$

$$
F(x,s) + \lambda H(x,s) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{(p.s.d.)}
$$

At $x = \pm 1$, $s = 0$ and $\lambda = -1$

$$
F(x, s) + \lambda H(x, s)
$$

= $\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}$ (n.s.d.)

 (P_2) is not a convex programming problem, (KKT) conditions are not sufficient for optimality.

Question2:

Can the (KKT) conditions of (P_1) be derived for the (KKT) conditions of (P_2) ?

Answer:

(KKT) conditions of (P_1) :

$$
\nabla f(x) + \sum_{j=1}^{k} \mu_j \nabla g_j(x) = 0 \quad , \ \mu_j \ge 0
$$

$$
\mu_j g_j(x) = 0
$$

(KKT) conditions of (P_2) :

$$
\nabla \tilde{f}(x, s) + \sum_{j=1}^{k} \lambda_j \nabla h_j(x, s) = 0 \quad , \lambda_j \in R
$$

$$
h_j(x, s) = 0
$$

Notice that for problem (P_2) ,

$$
\nabla \tilde{f}(x, s) = (\nabla f(x), 0)
$$

\n
$$
\nabla h_j(x, s) = (\nabla g_j(x), 0, \dots, 2s_j, 0, \dots, 0)
$$

\n
$$
\Rightarrow \lambda_j(2s_j) = 0, \quad j = 1, 2, \dots, k.
$$

- If $\lambda_i > 0$, then $s_i = 0$ and, consequently, $h_i(x, s) = g_i(x) = 0$ and $\lambda_i g_i(x) = 0$. - If $\lambda_i = 0$, then $\lambda_i g_i(x) = 0$ is obvious.

W.L.O.G. we say $\lambda_1 < 0$ and $\lambda_2, \dots, \lambda_k \geq 0$ and x is a strick local minimum solution. Then

$$
\begin{pmatrix} \nabla f(x)^T \\ 0 \end{pmatrix} + \sum_{j=2}^k \lambda_j \begin{pmatrix} \nabla g_j(x) \\ 0 \\ \vdots \\ 2s_j \\ \vdots \\ 0 \end{pmatrix} = -\lambda_1 \begin{pmatrix} \nabla g_1(x) \\ 2s_1 = 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.
$$

In other words,

$$
-\nabla f(x) + \sum_{j=2}^k \chi_j \overbrace{(-\nabla g_j(x))}^{\geq 0} = -(\mathscr{A}_1) \overbrace{\nabla g_1(x)}^{\geq 0}
$$

Note that $g_i(x) \leq 0$, moving along the direction of $-\nabla g_1(x)$ will reduce $g_1(x)$, reduce or retain $g_i(x)$, $j = 2, \dots, k$, and reduce $f(x)$. This contradicts the assumption that x is a local minimizer. Hence $\lambda_i \geq 0$ for $j = 1, 2, \dots, k$. Moreover, we know that $\lambda_i g_i(x) = 0$. Therefore, we can choose $\mu_j = \lambda_j$, for $j = 1, 2, \dots, k$ to satisfy the (KKT) conditions for (P_1) .