LECTURE 6: CONSTRAINED OPTIMIZATION – OPTIMALITY CONDITIONS

- 1. Basic concepts
- 2. Necessary conditions KKT conditions
- 3. Sufficient conditions

Constrained optimization

• General form:

Short form:

• Definition:

Let $h(\cdot) = (h_1(\cdot), \cdots, h_m(\cdot))^T$ with $h_i: E^n \to R$. Then $S \triangleq \{x \in E^n \mid h(x) = 0\}$ is a <u>surface</u>. When each $h_i(\cdot)$ is a (C^k) smooth function, then S is a (C^k) smooth <u>surface</u>.

• Observations:

- 1. Given $\bar{x} \in S$, $\nabla h_i(\bar{x})$ is orthogonal to a "tangent" plane of S at \bar{x} for each i.
- 2. The feasible directions at \bar{x} falls in $T(\bar{x}) \triangleq \{d \in E^n \mid \nabla h_i(\bar{x})d = 0, i = 1, 2, \cdots, m\}.$

We may write

$$\nabla h(\bar{x})d = 0$$
 for $\nabla h_i(\bar{x})d = 0, i = 1, \cdots, m$.

Definition

Let $\bar{x} \in S \triangleq \{x \in E^n \mid h(x) = 0\}$. Then \bar{x} is a regular point if the gradient vectors $\{\nabla h_1(\bar{x}), \cdots, \nabla h_m(\bar{x})\}$ are linearly independent.

- Observations:
 - 1. Every point $x \in E^n$ s.t. h(x) = 0 is "relatively interior" to $S = \{x \in E^n \mid h(x) = 0\}.$
 - 2. When \bar{x} is a regular point, $T(\bar{x}) \triangleq \{d \in E^n \mid \nabla h(\bar{x})d = 0\}$ is the tangent plane at \bar{x} with explicit geometric meanings.

- Definition
 - (i) A curve 𝒞 on a surface S is a set of points x(t) ∈ S continuously parameterized by t over an interval [a, b], i.e.,
 𝒞 = { x(t) ∈ S | t ∈ [a, b] }.

(ii)
$$\mathscr{C}$$
 is differentiable, if $\dot{x} \triangleq \frac{dx(t)}{dt}$ exists

(iv) \mathscr{C} passes through $\bar{x} \in S$, if $\exists \ \bar{t} \in (a, b)$, s.t. $x(\bar{t}) = \bar{x}$.

In this case, $\dot{x}(\bar{t})$ is the derivative of \mathscr{C} at \bar{x} .

(v) The tangent plane at x̄ ∈ S is the collection of the derivatives at x̄ of all differentiable curves passing through x̄.

• Theorem:

Let \bar{x} be a regular point of the surface $S \triangleq \{x \in E^n \mid h(x) = 0\}$. Then the tangent plane is equal to

 $T(\bar{x}) \triangleq \{ d \in E^n \mid \nabla h(\bar{x})d = 0 \}.$

• Proof:

Luenberger P. 298.

First order necessary conditions

- NLP with equality constraints
- Theorem:

Let x^* be a regular point of $S = \{x \in E^n \mid$

h(x) = 0 and a local minimum (maximum) point of f over S. Then

$$\nabla f(x^*)d = 0$$

for all $d \in T(x^*) = \{ d \in E^n \mid \nabla h(x^*)d = 0 \}$.

• Proof:

Directly from Taylor's Theorem, or Luenberger P. 300.

First order necessary conditions

Corollary: Let x^{*} be a regular point of
 S = {x ∈ Eⁿ | h(x) = 0} and a local minimum (maximum) point of f over S.

Then $\exists \lambda \in E^m$ such that

$$\nabla f(x^*) + \lambda^T \nabla h(x^*) = 0.$$

• Proof:

Consider the following LP problem minimize $-\nabla f(x^*)d$ s.t. $\nabla h(x^*)d = 0$ $d \in E^n$

and its dual problem

maximize 0 s.t. $\nabla h(x^*)^T \lambda = -\nabla f(x^*)^T$ $\lambda \in E^m$. Since x^* is a regular point, the previous theorem implies that the dual problem is feasible. Hence $\exists \lambda \in E^m$, s.t.

$$\nabla f(x^*) + \lambda^T \nabla h(x^*) = 0.$$

Observations

1. We may define

 $\ell(x,\lambda) \triangleq f(x) + \lambda^T h(x)$

as the Lagrangian associated with the constrained optimization problem. And we may call λ the Lagrange/Lagrangian vector and λ_i the Lagrange/Lagrangian multiplier associated with $h_i(x) = 0$. 2. The necessary conditions can be expressed as

$$\nabla_x \ell(x,\lambda) \left(= \nabla f(x) + \lambda^T \nabla h(x)\right) = 0,$$

 $\nabla_{\lambda}\ell(x,\lambda) \ (=h(x)) = 0,$

which is a system of n + m variables satisfying n + m equations.

First order necessary conditions

NLP with equality and inequality constraints

	maximize	f(x)
	s.t.	h(x) = 0
(NLP)		$g(x) \leq 0$
		$x\in E^n$

Definition

Let \bar{x} be a feasible solution and $J(\bar{x})$ be the index set of all active (inequality) constraints.

 \bar{x} is said to be a <u>regular point</u> if the gradient vectors $\nabla h_i(\bar{x})$, $i = 1, 2, \cdots, m$, and $\nabla g_j(\bar{x})$, $j \in J(\bar{x})$, are linearly independent.

Main theorem

• Theorem (KKT Conditions)

Let x^* be a relative minimum point for (NLP) that is a regular point. Then \exists a vector $\lambda \in E^m$ and a vector $\mu \in E^p_+$ s.t.

$$(*) \begin{cases} \nabla f(x^*) + \lambda^T \nabla h(x^*) + \mu^T \nabla g(x^*) = 0 \\ \mu^T g(x^*) = 0. \end{cases}$$

Proof

Since x^* is known, we know each inequality constraint is active or inactive. From the first-order necessary conditions for equality constraints, $\exists \lambda^T \in E^m$ and $\mu_j \in R, j \in J(x^*)$, such that

$$\nabla f(x^*) + \lambda^T \nabla h(x^*) + \sum_{j \in J(x^*)} \mu_j \nabla g_j(x^*) = 0.$$

Taking $\mu_j = 0$ for $j \notin J(x^*)$ leads to (*) except that $\mu_j \in R$ for $j \in J(x^*)$.

Let $J^+ = \{j \in J(x^*), \ \mu_j \ge 0\}$ and $J^- = \{j \in J(x^*), \ \mu_j < 0\}.$

If $J^- \neq \phi$, then we have $\nabla f(x^*) + \lambda^T \nabla h(x^*) + \sum_{j \in J^+} \mu_j \nabla g_j(x^*) = \sum_{j \in J^-} (-\mu_j) \nabla g_j(x^*).$ W.L.O.G. we may assume that $\nabla g_j(x^*) \neq 0$, $\forall j \in J^-$. Remember x^* is a regular point. A negative direction of the right hand side vector projected onto the null space of $\{\nabla h_i(x^*)\}$ leads to a direction d that has components in $-\nabla g_j(x^*)$ $(j \in J)$ and $-\nabla f(x^*)$ only.

In this case, moving along d from x^* will

- reduce the value in f,
- reduce the value in g_j, j ∈ J,
- (3) remain the same value in h_i, i = 1, · · · , m.

This contradicts to the fact that x^* is a local minimum point. Hence $J^- = \phi$ and $\mu_j \ge 0, \forall j \in J.$

Common terminologies

$$\begin{array}{c} h(x^*) = 0\\ g(x^*) \leq 0 \end{array} \right\} \text{ primal feasibility (PF)}$$

1.

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla h_i(x^*) + \sum_{j=1}^p \mu_j \nabla g_j(x^*) = 0 \\ \lambda_i \in R, \ \mu_j \ge 0 \end{cases} \begin{cases} \text{dual} \\ \text{feasibility} \\ (DF) \end{cases}$$

 $\mu^T g(x^*) = 0$ } complementary slackness (CS).

(PF) + (DF) + (CS) = K-K-T conditions.

- Any point x̄ ∈ Eⁿ for which ∃ (λ,μ) s.t.
 (x̄, λ, μ) satisfies K-K-T conditions is called a K-K-T point.
 - 3. The requirement of "x* is a regular point" is also called "Independence Constraint Qualification" (ICQ). There are many kinds of constraint qualification (CQ) conditions that relaxes (ICQ).

Constraint qualifications (CQ)

- Slater's condition (Slater's CQ)
- Other CQs

- (i) Each g_j is continuous and pseudo convex at x
 , j ∈ J(x).
- (ii) Each h_i is quasi convex, quasi concave, and continuous differentiable at x̄.
- (iii) {∇h_i(x̄)} are linearly independent.
- (iv) $\exists x \text{ s.t. } g_j(x) < 0, \forall j \in J(\bar{x}), \text{ and}$ $h_i(x) = 0, \forall i.$

Second order necessary conditions

Observations:

1. Following the corollary, at x^* there exists a $\lambda \in E^m$, s.t. $\nabla f(x^*) + \lambda^T \nabla h(x^*) = 0$. Notice that x^* is regular and $T(x^*) = \{y \in E^n \mid \nabla h(x^*)y = 0\}$ is a subspace of E^n .

Consider the problem of minimizing $\tilde{f}(y) \triangleq f(x^* + y) + \lambda^T h(x^* + y)$ over $T(x^*)$.

We know for sure that 0 is a local minimizer for this unconstrained problem in $T(x^*)$ space if and only if x^* is a local minimizer of f(x) over $S = \{x \in E^n \mid h(x) = 0\}.$ The second-order necessary conditions for unconstrained optimization problems require that

 $\tilde{F}(0) = F(x^* + 0) + \lambda^T H(x^* + 0) \triangleq L(x^*)$

be positive semidefinite on $T(x^*)$, i.e.,

 $y^T L(x^*)y \ge 0, \quad \forall y \in T(x^*).$

Result 1

<u>Theorem</u> (2nd Order Necessary Conditions / Equality Constraints)

Let x^* be a local minimum point of f over $S = \{x \in E^n \mid h(x) = 0\}$ and x^* is a regular point. Then $\exists \ a \ \lambda \in E^m$ s.t.

$$\nabla f(x^*) + \lambda^T \nabla h(x^*) = 0$$

and the matrix

$$L(x^*) = F(x^*) + \lambda^T H(x^*)$$

is positive semidefinite on

$$T(x^*) \triangleq \{ y \mid \nabla h(x^*)y = 0 \}.$$

<u>Proof</u>: (Luenberger P. 306-307 has an equivalent derivation.)

Result 2

<u>Theorem</u> (2nd-order Necessary Conditions / Equality and Inequality Conditions)

Let $f, g, h \in C^2$ and x^* be a regular point of $\mathscr{F} = \{x \in E^n \mid h(x) = 0, \ g(x) \leq 0\}$. If x^* is a local minimizer of f over \mathscr{F} , then $\exists \ \lambda \in E^m, \ \mu \in E^p_+$, such that

$$\nabla f(x^*) + \lambda^T \nabla h(x^*) + \mu^T \nabla g(x^*) = 0,$$

$$\mu^T g(x^*) = 0.$$

and

$$L(x^{*}) = F(x^{*}) + \lambda^{T} H(x^{*}) + \mu^{T} G(x^{*})$$

is positive semidefinite on the tangent subspace of all the active constraints at x^* <u>Proof</u>: Direct consequence of the same logic used in the previous theorem.

Sufficient conditions for optimality

• Key idea:

Following the 2nd-order sufficient conditions for unconstrained optimization problem will lead to an answer to the constrained case.

Result 1

• <u>Theorem</u>: (2nd-order Sufficient Conditions / Equality Constraints)

Let
$$x^* \in E^n$$
 and $\lambda \in E^m$ s.t.
$$\begin{cases} h(x^*) = 0\\ \nabla f(x^*) + \lambda^T h(x^*) = 0. \end{cases}$$

If $L(x^*) = F(x^*) + \lambda^T H(x^*)$ is positive definite on $T(x^*) = \{y \in E^n \mid \nabla h(x^*)y = 0\}$, then x^* is a strict local minimum point of fover

$$S = \{ x \in E^n \mid h(x) = 0 \}.$$

Proof:

Luenberger P. 307 proved explicitly by contradiction.

Observations

1. When inequality constraints involved, the index set $J(x^*) = \{j \mid g_j(x^*) = 0\}$ and

 $\nabla f(x^*) + \lambda^T \nabla h(x^*) + \mu^T \nabla g(x^*) = 0$

with $\lambda \in E^m$ and $\mu_j \ge 0, \forall j \in J(x^*)$.

If $\mu_j = 0$, then g_j actually plays no role for an active constraint. In this case, we call it a "degenerate inequality" to begin with. We define

 $\bar{J}(x^*) = \{j \mid g_j(x^*) = 0 \text{ and } \mu_j > 0\}$

to index those "nondegenerate" inequalities with positive Lagrange multipliers.

- 2. Note that $J(x^*) = \overline{J}(x^*)$ under the "nondegeneracy assumption".

Result 2

<u>Theorem</u>: (2nd-order Sufficient Conditions /Equality and Inequality Conditions)

Let $f, g, h \in C^2$ and $x^* \in \mathscr{F}$. If $\exists \lambda \in E^m$, $\mu \in E^p_+$, s.t. $\nabla f(x^*) + \lambda^T \nabla h(x^*) + \mu^T \nabla g(x^*) = 0$, $\mu^T g(x^*) = 0$,

and the Hessian matrix

$$L(x^{*}) = F(x^{*}) + \lambda^{T} H(x^{*}) + \mu^{T} G(x^{*})$$

is positive definite on the subspace

$$\begin{split} \bar{T}(x^*) &= \{ y \in E^n \mid \nabla h(x^*)y = 0, \\ \nabla g_j(x^*)y &= 0, \ \forall j \in \bar{J}(x^*) \}, \end{split}$$

then x^* is a strict relative minimizer of f over \mathscr{F} .

Observations

- 1. $T(x^*) \subset \overline{T}(x^*)$
- T(x*) = T(x*) iff every active inequality constraint at x* is nondegenerate.

Corollary:

Let f be strictly convex, g_j convex, and x^* a K-K-T point of minimizing f(x) over $\{x \in E^n \mid g(x) \leq 0\}$. Then x^* is a global minimizer.

Interesting questions

Consider the following two problems:

 $\begin{array}{cccc} \operatorname{Min} & f(x) & \operatorname{Min} & \tilde{f}(x,s) = f(x) \\ \text{s. t.} & g_1(x) \leq 0 & \text{s. t.} & h_1(x,s) \triangleq g_1(x) + s_1^2 = 0 \\ (P_1) & \vdots & (P_2) & \vdots \\ & g_k(x) \leq 0 & & h_k(x,s) \triangleq g_k(x) + s_k^2 = 0 \\ & & x \in E^n & & (x,s) \in E^{n+k} \end{array}$

It is clear that (P_1) and (P_2) are equivalent, but (P_1) has k inequality constraints and (P_2) has k equality constraints.

Question 1: Why should we explicitly use the (KKT) conditions of (P_1) ?

Question2:

Can the (KKT) conditions of (P_1) be derived for the (KKT) conditions of (P_2) ?

Question 1: Why should we explicitly use the (KKT) conditions of (P_1) ?

$$\begin{array}{c} \hline \text{Necessary Conditions} \\ \hline (P_1) & \left\{ \begin{array}{c} 2x + \mu(2x) = 0 \\ \mu(x^2 - 1) = 0 \end{array} \right., \ \mu \ge 0 \\ \Rightarrow \ x = 0 \ \text{and} \ \mu = 0. \end{array} \right. \\ \begin{array}{c} (P_2) & \left\{ \begin{array}{c} \begin{bmatrix} 2x \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 2x \\ 2s \end{bmatrix} = 0 \\ x^2 + s^2 = 1 \end{array} \right. \\ \begin{pmatrix} 2x + \lambda \end{bmatrix} = 0 \\ x^2 + s^2 = 1 \end{array} \right. \\ \left\{ \begin{array}{c} 2x(1 + \lambda) = 0 \\ 2\lambda s \\ x^2 + s^2 = 1 \end{array} \right. \\ \begin{array}{c} x = 0 \\ x = 0 \end{array} \right. \\ \begin{array}{c} x = 0 \\ x = \pm 1 \\ x^2 + s^2 \end{array} \right. \\ \begin{array}{c} x = 1 \\ x = 1 \end{array} \\ \begin{array}{c} x = 1 \\ x = -1 \end{array} \\ \begin{array}{c} x = 1 \\ x = 1 \end{array}$$

Sufficient Conditions

 (P_1) F(x) = (2), G(x) = (2).At x = 0 and $\mu = 0$,

 $F(x) + \mu G(x) = (2) > 0$ (p.d.)

(P1) is a convex programming problem, (KKT) conditions are sufficient for optimality. (P_2)

$$F(x,s) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, H(x,s) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

At $x = 0, s = \pm 1$ and $\lambda = 0$
$$F(x,s) + \lambda H(x,s) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$
(p.s.d.)

At $x = \pm 1$, s = 0 and $\lambda = -1$

$$F(x,s) + \lambda H(x,s) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix} \quad (\text{n.s.d.})$$

(P₂) is not a convex programming problem, (KKT) conditions are not sufficient for optimality.

Question2:

Can the (KKT) conditions of (P_1) be derived for the (KKT) conditions of (P_2) ?

Answer:

(KKT) conditions of (P_1) :

$$\nabla f(x) + \sum_{j=1}^{k} \mu_j \nabla g_j(x) = 0 \quad , \ \mu_j \ge 0$$
$$\mu_j g_j(x) = 0$$

(KKT) conditions of (P_2) :

$$abla ilde f(x,s) + \sum_{j=1}^k \lambda_j
abla h_j(x,s) = 0 \quad , \ \lambda_j \in R$$

 $h_j(x,s) = 0$

Notice that for problem (P_2) ,

$$\nabla \tilde{f}(x,s) = (\nabla f(x), 0)$$

$$\nabla h_j(x,s) = (\nabla g_j(x), 0, \cdots, 2s_j, 0, \cdots, 0)$$

$$\Rightarrow \lambda_j(2s_j) = 0, \quad j = 1, 2, \cdots, k.$$

- If $\lambda_j > 0$, then $s_j = 0$ and, consequently, $h_j(x,s) = g_j(x) = 0$ and $\lambda_j g_j(x) = 0$. - If $\lambda_j = 0$, then $\lambda_j g_j(x) = 0$ is obvious.

W.L.O.G. we say $\lambda_1 < 0$ and $\lambda_2, \dots, \lambda_k \ge 0$ and x is a strick local minimum solution. Then

$$\begin{pmatrix} \nabla f(x)^T \\ 0 \end{pmatrix} + \sum_{j=2}^k \lambda_j \begin{pmatrix} \nabla g_j(x) \\ 0 \\ \vdots \\ 2s_j \\ \vdots \\ 0 \end{pmatrix} = -\lambda_1 \begin{pmatrix} \nabla g_1(x) \\ 2s_1 = 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

In other words,

$$-\nabla f(x) + \sum_{j=2}^{k} \lambda_{j}^{\geq 0} (-\nabla g_{j}(x)) = -(-\lambda_{1})^{\geq 0} \nabla g_{1}(x)$$

Note that $g_i(x) \leq 0$, moving along the direction of $-\nabla g_1(x)$ will reduce $g_1(x)$, reduce or retain $g_i(x), j = 2, \dots, k$, and reduce f(x). This contradicts the assumption that x is a local minimizer. Hence $\lambda_i \ge 0$ for $j = 1, 2, \dots, k$. Moreover, we know that $\lambda_i g_i(x) = 0$. Therefore, we can choose $\mu_j = \lambda_j$, for $j = 1, 2, \cdots, k$ to satisfy the (KKT) conditions for (P₁).