LECTURE 7: CONSTRAINED
OPTIMIZATION — SENSITIVITY
ANALY SIS AND DUALITY

1. Basic concepts
2. Sensitivity analysis
3. Duality theory



Sensitivity analysis

- Consider NLP with equality constraints:

minimize  f(x)

S.t. h(x) =20

Let 2" be a local minimizer with a Lagrange (i) How will the solution 2*(c) be perturbed?

vector A" € B, (i) How will the optimal value f(z*(c)) be

[t the right-hand-side is perturbed by a vector perturhed?
ceL™ (iii) How is the change associated with \*?



Basic Idea of Implicit Functions

Suppose we have a set of m equations in n

variables

If we fix n — m variables, can the equations
be solved for the remaining m variables?
In other words, for m selected variables

T1.L9, I, can they be expressed
implicitly as a function of the remaining

variables .1, -+ ,x, in the form of

mfi:qsi(mmﬁ—la"' :xn): 1=1,- :m?



Example

rp
For LP problem with Ax = b, we let ¥ = —

N

and A = [B | N],

LB
then B | N -

[
>

TN

— 2p =B '(b— Nan)

Therefore, the m basic variables are functions of

the n — m nonbasic variables!



Implicit function theorem

- Theorem:
Then 4 a neighborhood of

T = (Tgts e I € E"7" st for

Let 7 € E™ such that
(i) () =0, 1=1,2,-++,m.

(ii) u; € CP (for some p > 1) in a Lom = ($m+la v ,fEn) S N(Q_:—m)a ]
neighborhood of . functions o;(r_y, ), 1= 1,2, . m, with
(iii) The Jacobian matrix
Cow@)  du@ ] i) 0y € CP(N(z_p))
Ory T Oz '
J = (ﬁ) i@:%(i_m)?:l,l”',m.
_ —3%";55)’ e 3%;‘;5) [ (lll) U@(%(I_m),'” a¢m(I—m)aI—m) =0,1=

is nonsingular. L2, m.



Sensitivity theorem

Let fand h; (i=1,2,---,m) € C%. Consider
the family of problems associated with
cebm:

minimize f(r)

(P) s.t. hr)=c

S that i '
uppose tha Then for every ¢ in a sufficiently small

(i) «* is a local solution to the problem with neighborhood of 0, there is an z* (C),

¢=0. depending continuously on ¢, such that

(i) x* is a regular point. QZ*(U) = 1" and LE*(C) is a local minimum of
(P). Moreover,

(iii) 2" and the associated Lagrange vector \*
satisfy the 2nd-order sufficient conditions

*
for a strict, local minimum solution. VCf (LE (C))

=—(\)".

c=0



Proof
Consider the following system of n +m Because " is a regular point and L(x*) is
equations in n +2m variables (z. A, ¢): positive definite on T'(x*), J is nonsingular.

Vv N Vh(z)=0
(%) fla) + ) By the Implicit Function Theorem, 3 a

) —e=0 solution (2*(¢), A*(¢)) to the system ()
which is C? in a small neighborhood of ¢ = 0
with 2%(0) = 2%, A*(0) = A",

Previous results tell us there exists a solution
(%, A*) at ¢ = 0. We would like to represent
the n +m variables (x, A) in terms of the

remaining m variables c.
The Jacobian matrix of the above system at

(2%, \*) is local minimizer of (P).

Using assumption (iii), we know x*(c) is a




Proof - continue

Using the chain rule. we have

Vef (27 ()] . o= Vaf(x")Ve.x™(0)
and

Veh(x™(c)) Ic:O: Vih(x™ )V .x"(0).
But A(x*(¢)) —c=0 implies that

Veh(x™(e)) L:;:UZ 1.

Notice that V. f(x*) + (A*)TVh,.(x*) = 0.

Hence
Vef(z ()| _, = Vaf(z*)V.x*(0)
— (A IV h (x*)V .2 (0)

— (AT Vb () |c:0
— — (AT,



Corollary

- NLP with equality and inequality constraints

Let f,q;,hi € C?. Consider the family of

problems:

minimize  f(x)

(NLP) st. h(r)=c

Suppose that for ¢ =0, d =0, there exists a
local solution x* that is a regular point and
that, together with the associated Lagrange
vectors A" € E™, " € Ei, satisfying the

2nd-order sufficient conditions.

Assume further that no active inequality

constraint is degenerate,

Then ¥ (c,d) € E™ P in a sufficiently small
neighborhood of (0,0), there exists a solution
*(c,d), depending continuously on (¢, d), s.t.
r*(0,0) = 2" and 2*(c, d) is a local minimum
of problem (NLP). Moreover,

Vef (x*(cvdm(ojo): -(\)"

Vdf(m* (Cadm(o’g): _(“*)T'



Observations

2. 'T'he resource provider may have a profit
1. Consider a manufacturer who is facing a

function based on the price he/she sets for

problem with inequality constraints: the manufacturer. An associated problem

Minimize f(x) becomes
s. t. g(xr) <0 Max  o(p)
— s.t. e B,
where ¢(1) is the profit function of price.
Take f(x) «—— production cost,
g(x) <0 —— resource constraints, 3. For a given price it > 0, the manufacturer

will try to
X «—— set of interests.

win {£(x) + 1" g()}.
Then Vdf(a:(d))|d:0: —pT may mean e

that a unit incremental in resource j will 4. The provider may want to associate the
cause a marginal cost of —pi; in profit function with the relation
production.

o) = min {f(x) + plg(x)}, p=0,
Since —yu; < 0, this is a cost reduction.

Hence the manufacturer is willing to pay a and try to maximize it.

price of y; (> 0) to acquire this extra o
5. This will be done through the concept of

“local duality™.

resource.



L
Duality theory

- Motivation of Local Duality

2. Let 2" be a regular. local minimum point.
Then 3 A" € E™ such that

I Start with a problem with equality

constrains: Vi(a*) + ) TVh(z*) = 0
minimize f(z) and
st hlz)=0 L(x") = F(x") + (\")" H(2")

hich i " definit h
Where 1E En? h(ﬂ?) c Em and f,h c 02' which is positive semidefinite on the

tangent subspace

T(x")={y € £" | Vh(z")y = 0}.



L
Local duality

3. For “local convexity,” assume that L(z*) 5. Given A € Na(A"). we define a

dual function:

is positive definite on a sufficiently small
Ny(x*). 6(A) £ I{li,ﬂr;l £ () + AT h(x)],

Then E(I) = f(x) T (/\*)Th(:lt) is locally Then ¢(\) is a concave function over
convex at x* with ™ being a strict, local Na(A*).

winimizer over Ny (7). 6. We show that the original constrained

. _ local minimization problem is equivalent
4. By the Implicity Function Theorem, we _ L
to the unconstrained local maximization

know there exists a C* function z 2 2*(\)

. . problem of “maximize ¢(\)”.

with = = 2*(\*) that provides a local

minimizer of {(x) near =* when \ is near 7. Once the equivalence relation is

A*, say A € Ny(\F). established, all unconstrained optimization
theory and solution methods become

applicable.



Example 1 .
Minimize  f(x) = x] + x; ¢ =m
S. L.
5 »
hix)=x —x,+1=0 K/
flx)=1
0
For ™ = ' ) i Take partial derivatives,
201 +2 1 =0 = 11 =0
V(™) +2Vh(z™) =0, 200 = A =0 = T3 = 3.
A* =2, f(x*) =1. Hence o(A) =02 4+ (3)2+ A(02 — 2 +1)
TN
: 2
6(X) = inf [£(x) + Ah(a) N
— inf [I% + :I:% + A(I% — IL) + ]_)] . concave function to be maximized
T N vy
convex locally as A>—1 Take derivative, —3 +1=0 = X* =2 and

HO) = 1 = f(a),



Example 2

Minimize  f(x)=x —x,+1
S. L.

h(x):x12+x22—1:0

For:c*(o),
1

Vi(x*)+ $Vh(z*) =0,

N= 3, f(z¥)=0.

O(\) =inf (27 — 29 + 1+ Na] + 23 — 1)]

= inf [(1+ Nt + Ax3 — a0 + 1 -\,

convex as A>0

Take partial derivatives,
2(1—|—)\)$1:0 = 11 =20
2Axo — 1 =0 1

o) =0+ A(55)* -

= ﬂ?gzﬁ.

f(x)=0

ol
k%(x)ﬂ} F

1

st 1=4

= —% +1 =\ (over a neighborhood of
=1,

Maximize ¢(\) over the neighborhood
= m-1=0 = X=

O(A") =0 = f(x).



Observation 1

1. In our “local convexity’ setting.

P(N) = f(x™(N) + A h(x™(N)).
Hence

Vd(AN) = Vf(x"(AN)Ve*(A)
AT T h(x* (N Vae*(N) + A(xz*( AT
= [V f(x*(N) + ATV h(z* (M) Var(A) + A(xz*(2)T

i -
S

=0

— h(xz*(A)T.

This means that given A\, we find =*(\) by
minimizing { f(x) + Ah(x)} around x*,
then A(x*(N))7 provides the gradient

information of @ at A, even we don’t know
the explicit form of &(\).



Observation 2

2. Vo(A) = h(x*(N\)"
= B(\) = Vhalz* (V) V().

Also, Vf(z*(N\) +ATVh(xz*(N) =0
= L(x*(N\),\)Va2*(\) + Vh(x*(N\)T = 0.

Hence

O(N) = —=Vh(z*(A\)L™ (" (N\), \)Vh(z* ()T,

Since L~ (2*(\). \) is positive definite and
Vh(x*(A)) is of full rank near x*, we know
$(N) is negative definite. This gives us “local

concavity” on the dual side.



Observation 3

3. Observation 1 says
Vo) = h(x*)T =o0.

Observation 2 says

$(\) is negative definite in No(A™).

Hence

A* is a maximizer of ¢(A) over No(\™).



Local duality theorem

o Theorem: Let =7 be a regular. local minimum point of

the problem

minimizer  f(x)

()
s.t. fo(ar) — O

with corresponding value v* and Lagrange
multipliers A™. If the Hessian of the

Lagrangian
L(x™) = F(x™) + (N H(x™)
is positive definite., then the dual problem

(D) maximize { ¢(X) £ minimize [f(x) + X (x)] }

has a local solution at A" with corresponding
value v and has &* as the point

corresponding to AT in the definition of .



Observations

1. The dual problem (D) is a max-min

problem.
2. (Inequality Constraints)

The result can be easily extended to the

problem
minimize  f(x)
(P) s.t. h(r)=20
g(x) < 0. For Aand yt > 0 near \* and 4, we define
with f.h.g € C?.
In this case, the local convexity (;5()\ ]L) - E%{H? [f( ) )\Th(l')-l-pTg(I)]
LTV (T

assumption requires that

Lz™) 2 F(a")+ (AT H (") + () G () Then (A p°) is a local maximizer of
o[\ o) with A € E" and pi€ EL.

is positive definite on Ny (x™).



Observations

3. (Convex Duality) 4. (Partial Duality)

When f, ¢ are convex and h is affine, then [t is not necessary to include the

problem (P) is a convex program. Hence a Lagrangian multipliers of all the

local optimizer becomes a global constraints in defining the dual function.

When the local convexity assumption
holds. local duality can be defined with

respect to any subset of functional

optimizer. Moreover, the Lagrangian
fla)+ X h(x) + 't g(x) is convex for any
A B™ and pe BT and (A, p) s

constraints, For problem (P), we may
concave,

consider

o(\) = min {f(x)+ A\ h(r)}

g(x)<0

as a partial dual.
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