LECTURE 8: CONSTRAINED OPTIMIZATION – LAGRANGIAN DUAL PROBLEM

- 1. Lagrangian dual problem
- 2. Duality gap
- 3. Saddle point solution

Lagrangian dual problem

Primal Problem:

Lagrangian Dual Problem:

minimize $f(x)$ maximize $\phi(\lambda, \mu)$
s.t. $\mu \geq 0$ (LD) s.t. $h(x) = 0 \leftarrow \lambda \in E^m$ (P) $g(x) \leq 0 \quad \leftarrow \quad \mu \in E_{+}^{p}$ where $\phi(\lambda, \mu) = \inf_{x \in X} [f(x) + \lambda^T h(x) + \mu^T g(x)]$ $x \in X$

Property 1 – weak duality

Let \bar{x} be a primal feasible solution and $(\lambda, \bar{\mu})$ be a dual feasible solution. Then

$$
\phi(\bar{\lambda}, \bar{\mu}) = \inf_{x \in X} \{ f(x) + \bar{\lambda}^T h(x) + \bar{\mu}^T g(x) \}
$$

\n
$$
\leq f(\bar{x}) + \underbrace{\bar{\lambda}^T h(\bar{x})}_{=0} + \underbrace{\bar{\mu}^T g(\bar{x})}_{\leq 0}
$$

\n
$$
\leq f(\bar{x}).
$$

Weak duality theorem

Theorem (Weak Duality Theorem):

Let \bar{x} be primal feasible and $(\bar{\lambda}, \bar{\mu})$ be dual feasible. Then,

 $\phi(\bar{\lambda}, \bar{\mu}) \leq f(\bar{x}).$

Corollary 1:

 $\inf_{x \in \mathscr{F}} f(x) \geq \sup_{(\lambda,\mu) \in \mathscr{D}} \phi(\lambda,\mu)$ where $\mathscr{F} = \{x \in X \mid g(x) \leq 0, \text{ and } h(x) = 0\},\$ $\mathscr{D} = \{(\lambda, \mu) \mid \lambda \in E^m, \mu \in E^p_+\}.$

Corollary 2:

Let \bar{x} be primal feasible and $(\bar{\lambda}, \bar{\mu})$ be dual feasible. If $f(\bar{x}) = \phi(\bar{\lambda}, \bar{\mu})$, then \bar{x} solves (P) and $(\bar{\lambda}, \bar{\mu})$ solves (LD).

Corollary 3:

If sup $\phi(\lambda,\mu) = +\infty$, then (P) is infeasible. $(\lambda,\mu) \in \mathscr{D}$

Corollary 4:

If $\inf_{x \in \mathscr{F}} f(x) = -\infty$, then $\phi(\lambda, \mu) = -\infty$ for any $\mu \geq 0$.

Property 2 – concavity and subgradient

Let $X \in E^n$ be nonempty and compact, f, g, h be continuous. Then,

(a)
$$
\phi(\lambda, \mu) = \inf_{x \in X} \{ f(x) + \lambda^T h(x) + \mu^T g(x) \}
$$

is well defined on $E^m \times E_+^p$.

(b) $\phi(\lambda,\mu)$ is concave over $E^m \times E^p_+$.

<u>Proof</u>: Given any $\omega \in (0,1)$, $\phi(\omega\bar{\lambda}+(1-\omega)\bar{\bar{\lambda}},\omega\bar{\mu}+(1-\omega)\bar{\bar{\mu}})$ $\geq \omega \phi(\bar{\lambda}, \bar{\mu}) + (1 - \omega) \phi(\bar{\lambda}, \bar{\bar{\mu}}).$ (c) Given any $(\bar{\lambda}, \bar{\mu}) \in E^m \times E^p_+$, define $X(\bar{\lambda}, \bar{\mu}) \triangleq {\bar{x} \in X \mid \bar{x} \text{ minimizes}}$ $f(x) + \overline{\lambda}^T h(x) + \overline{\mu}^T g(x)$ over X. Then $X(\bar{\lambda}, \bar{\mu}) \neq \phi$ in our setting.

(d) For any $\bar{x} \in X(\bar{\lambda}, \bar{\mu})$,

$$
\phi(\lambda, \mu) = \inf_{x \in X} \{ f(x) + \lambda^T h(x) + \mu^T g(x) \}
$$

\n
$$
\leq f(\bar{x}) + \lambda^T h(\bar{x}) + \mu^T g(\bar{x})
$$

\n
$$
= \frac{f(\bar{x}) + (\lambda - \bar{\lambda})^T h(\bar{x}) + (\mu - \bar{\mu})^T g(\bar{x})}{+\bar{\lambda}^T h(\bar{x}) + \bar{\mu}^T g(\bar{x})}
$$

\n
$$
= \underline{\phi(\bar{\lambda}, \bar{\mu})} + (\lambda - \bar{\lambda})^T h(\bar{x}) + (\mu - \bar{\mu})^T g(\bar{x}).
$$

 $\Rightarrow \left(\begin{array}{c} h(\bar{x}) \\ g(\bar{x}) \end{array} \right)$ is a subgradient of ϕ at $(\bar{\lambda}, \bar{\mu})$.

(e) If $X(\overline{\lambda}, \overline{\mu})$ is singleton, and $\overline{x} \in X(\overline{\lambda}, \overline{\mu})$, then ϕ is differentiable at $(\lambda, \bar{\mu})$ and

$$
\nabla \phi(\bar{\lambda}, \bar{\mu}) = \left(\begin{array}{c} h(\bar{x}) \\ g(\bar{x}) \end{array}\right)
$$

Property 3 – duality gap

• Duality gap may exist

Example 1:

Minimize $f(x) = x^3$ s. t. $h(x) = x - 1 = 0$ $x \in E^1$.

(a) f is not convex.

(b)
$$
x^* = 1
$$
 and $v^* = f(x^*) = 1$.

(c)
$$
\phi(\lambda) = \inf_{x \in R} \{x^3 + \lambda(x - 1)\}
$$

$$
= \inf_{x \in R} \{x^3 + \lambda x - \lambda\}
$$

$$
= \begin{cases} -\infty, & \lambda > 0 \\ -\infty, & \lambda = 0 \\ -\infty, & \lambda < 0 \end{cases}
$$

(e) Can you check the local behavior of $\phi(\lambda)$ around $x^* = 1$ and $\lambda^* = -3$?

(d) $\phi(\lambda^*) = -\infty \neq f(x^*) = 1$.

Example of duality gap

Example 2 (Bazaraa/Sherali/Shetty p. 205-206)

$$
(P) \quad \text{Minimize} \quad f(x) = -2x_1 + x_2
$$
\n
$$
\text{s. t.} \quad h(x) = x_1 + x_2 - 3 = 0
$$
\n
$$
x \in X = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}
$$

(d)
$$
\phi(\lambda) = \min_{x \in X} \{ -2x_1 + x_2 + \lambda(x_1 + x_2 - 3) \}
$$

$$
= \begin{cases} -4 + 5\lambda, & \text{if } \lambda \le -1 \\ -8 + \lambda, & \text{if } -1 \le \lambda \le 2 \\ -3\lambda, & \text{if } \lambda \ge 2. \end{cases}
$$

(a) X is compact, but not convex.

(b) Only
$$
\begin{pmatrix} 1 \\ 2 \end{pmatrix}
$$
 and $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ are feasible.
(c) $x^* = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ with $v^* = f(x^*) = -3$.

(e) $\lambda^* = 2$ with $\phi(\lambda^*) = -6 \neq -3 = f(x^*)$!!

Property 4 – strong duality

Duality gap vanishes only under proper $conditions$ – Strong Duality Theorem

• Theorem: (Bazaraa/Sherali/Shetty p.208)

Assume that

- (i) $X \neq \emptyset$ and is convex;
- (ii) f, g are convex and h is affine;
- (iii) (CQ) There exists $\bar{x} \in X$ such that
	- (a) $g(\bar{x}) < 0$,
	- (b) $h(\bar{x}) = 0$,
	- (c) $0 \in \text{int}[h(X) \triangleq {h(x)|x \in X}].$

Then,

$$
\inf_{x \in \mathscr{F}} f(x) = \sup_{(\lambda,\mu) \in \mathscr{D}} \phi(\lambda,\mu).
$$

Moreover, if the inf is finite, then $\sup_{(\lambda,\mu)\in\mathscr{D}}\phi(\lambda,\mu)$ is achieved at an $(\bar{\lambda}, \bar{\mu})$ with $\bar{\mu} \geq 0$. If the inf is achieved at \bar{x} , then $\bar{\mu}^T g(\bar{x}) = 0$.

Geometric interpretation of LD

Consider a case with only one inequality constraint:

 $\phi(\mu)$ min $f(x)$ max $(P) \quad \text{s.t.} \quad g_1(x) \leq 0 \qquad \quad \text{s.t.} \quad \mu \geq 0$ (LD) $\phi(\mu) = \inf_{x \in X} \{f(x) + \mu g_1(x)\}\$ $x \in X$

Let

$$
G \triangleq \{(y, z)|y = g_1(x), z = f(x) \text{ for some } x \in X\}.
$$

1. (P) says that "on the (y, z) plane, we are looking for a point in G with $y\leq 0$ and a minimum ordinate."

2.
$$
\phi(\mu) = \inf_{x \in X} \{ \underbrace{f(x) + \mu g_1(x)}_{z + \mu y} \}
$$

Note that the contour of

$$
\alpha = z + \mu y
$$

is a line in the (y, z) plane with slope $= -\mu$ (≤ 0) and intercept = α on the z axis.

- 3. (LD) says that we should find the slope of the supporting hyperplane such that its intercept on the z axis is maximum.
- 4. When X is convex and f, g are convex, G must be convex. Its supporting hyperplane satisfies that

$$
\begin{aligned}\n\phi(\mu^*) &= z^* + \underbrace{\mu^* y^*}_{=0} \\
&= z^* = f(x^*).\n\end{aligned}
$$

Picture of duality gap

Duality Gap

Full Lagrangian dual

Minimize $f(x) = x^3$ s.t. $-1 \le x \le 1$ $x \in E^1$

Easy to observe $x^* = -1$, $f(x^*) = -1$.

Full Lagrangian dual

- Let $X = \{x \in E^1\}$.
- $\phi(\mu) = \inf_{x \in E} [x^3 + \mu_1(x-1) + \mu_2(-x-1)]$ for $\mu_1, \mu_2 \ge 0$.
- $\phi(\mu) = -\infty$ because $x^3 + \mu_1(x-1) + \mu_2(-x-1) \rightarrow -\infty$ as $x \rightarrow -\infty$.

Partial Lagrangian dual (1)

Minimize $f(x) = x^3$ s.t. $-1 \le x \le 1$ $x \in E^1$

We know $x^* = -1$, $f(x^*) = -1$.

Partial Lagrangian dual (1):

• Let $X = \{x \in E^1 | x \ge -1\}$.

•
$$
\phi(\mu) = \inf_{x \ge -1} [x^3 + \mu(x - 1)]
$$
 for $\mu \ge 0$.

• $x^* = -1$ because $x^3 + \mu(x - 1)$ is increasing w.r.t. x.

• $\phi(\mu) = -1 - 2\mu$.

Maximize $\phi(\mu) = -1 - 2\mu$ Dual: s.t. $\mu \geq 0$ $\mu^* = 0, \phi(\mu^*) = -1.$

Partial Lagrangian dual (2)

Minimize $f(x) = x^3$ s.t. $-1 \le x \le 1$ $x \in E^1$

We know $x^* = -1$, $f(x^*) = -1$.

Partial Lagrangian dual (2):

- Let $X = \{x \in E^1 | x \le 1\}$.
- $\phi(\mu) = \inf_{x \leq 1} [x^3 + \mu(-x 1)]$ for $\mu \geq 0$.
- $\phi(\mu) = -\infty$ because $x^3 + \mu(-x 1) \rightarrow -\infty$ as $x \rightarrow -\infty$.

Lagrangian dual of LP

Example 1 (Linear Programming)

minimize $c^T x$ (P) s.t. $Ax = b$ $x\geq 0$

Let
$$
X = \{x \in E^n | x \ge 0\}.
$$

\n
$$
\phi(\lambda) \triangleq \inf_{x \ge 0} \{c^T x + \lambda^T (b - Ax)\}
$$
\nmaximize $\phi(\lambda) = b^T \lambda$
\n
$$
= \lambda^T b + \inf_{x \ge 0} \{ (c^T - \lambda^T A)x \}
$$
\n(LD) s.t. $A^T \lambda \le c$
\n
$$
= \begin{cases}\n\lambda^T b, & \text{if } c^T - \lambda^T A \ge 0, \\ -\infty, & \text{otherwise.}\n\end{cases}
$$
\n(1.1)

Lagrangian dual of QP

Example 2 (Quadratic Programming)

minimize $\frac{1}{2}x^TQx + c^Tx$ (QP) s.t. $Ax \leq b$

where Q is positive semi-definite.

Let $X = E^n$.

$$
\phi(\mu) \triangleq \inf_{x \in E^n} \left\{ \frac{1}{2} x^T Q x + c^T x + \mu^T (Ax - b) \right\}
$$

convex for any given μ

The necessary and sufficient conditions for a minimum is that

$$
Qx + A^T \mu + c = 0.
$$

maximize $\frac{1}{2}x^TQx + c^Tx + \mu^T(Ax - b)$ (LD) s.t. $Qx + A^T \mu + c = 0$ $\mu > 0$.

Lagrangian dual of QP

Since $c^T x + \mu^T A x = -x^T Q x$, we have

maximize
$$
-\frac{1}{2}x^TQx - b^T\mu
$$

(Dorn's Dual) s.t. $Qx + A^T\mu = -c$
 $\mu > 0$.

When Q is positive definite, then

$$
x^* = -Q^{-1}(c + A^T \mu)
$$

and

$$
\phi(\mu) = \frac{1}{2} [Q^{-1}(c + A^T \mu)]^T Q [Q^{-1}(c + A^T \mu)]
$$

\n
$$
-c^T Q^{-1}(c + A^T \mu)
$$

\n
$$
+ \mu^T (-AQ^{-1}(c + A^T \mu) - b)
$$

\n
$$
= \frac{1}{2} \mu^T \underbrace{(-AQ^{-1}A^T)\mu}_{D: \text{ negative definite}}
$$

\n
$$
- \frac{1}{2} c^T Q^{-1} c
$$

maximize $\frac{1}{2}\mu^T D \mu + \mu^T d - \frac{1}{2}c^T Q^{-1} c$ (LD) s.t. $\mu \geq 0$.

Saddle point solution

minimize
$$
f(x)
$$

\n(NLP) s.t. Lagrangian function
\n
$$
g(x) \le 0
$$
\n
$$
h(x) = 0
$$
\n
$$
x \in X
$$
\nLagrangian function
\n
$$
\ell(x, \mu, \lambda) \triangleq f(x)
$$

$$
\ell(x,\mu,\lambda) \triangleq f(x) + \mu^T g(x) + \lambda^T h(x).
$$

• Definition

 $(\bar{x}, \bar{\mu}, \bar{\lambda}) \in E^{n+m+p}$ is called a saddle point (solution) of $\ell(x,\mu,\lambda)$ if (i) $\bar{x} \in X$, (ii) $\bar{\mu} \geq 0$, (iii) $\ell(\bar{x}, \lambda, \mu) \leq \ell(\bar{x}, \bar{\mu}, \bar{\lambda}) \leq \ell(x, \bar{\mu}, \bar{\lambda}),$ $\forall x \in X, \ \mu \in E_{+}^{p}, \ \lambda \in E^{m}.$

Saddle point and duality gap

• Basic idea : The existence of a saddle point solution to the Lagrangian function is a necessary and sufficient condition for the absence of a duality gap!

Theorem 1:

Let $\bar{x} \in X$ and $\bar{\mu} \geq 0$. Then, $(\bar{x}, \bar{\mu}, \lambda)$ is a saddle point solution to $\ell(x, \mu, \lambda)$ if and only if

(a)
$$
\ell(\bar{x}, \bar{\mu}, \bar{\lambda}) = \underset{x \in X}{\text{minimize }} \ell(x, \bar{\mu}, \bar{\lambda}),
$$

\n(b) $g(\bar{x}) \le 0$ and $h(\bar{x}) = 0,$
\n(c) $\bar{\mu}^T g(\bar{x}) = 0.$

Proof

Proof: (Part 1)

Let $(\bar{x}, \bar{\mu}, \bar{\lambda})$ be a saddle point solution.

By definition, we know (a) holds.

Moreover,

$$
f(\bar{x}) + \bar{\mu}^T g(\bar{x}) + \bar{\lambda}^T h(\bar{x}) \ge f(\bar{x}) + \mu^T g(\bar{x}) + \bar{\lambda}^T h(\bar{x}),
$$

$$
\forall \mu \in E_+^p, \ \lambda \in E^m.
$$

This implies that $g(\bar{x}) \leq 0$ and $h(\bar{x}) = 0$, otherwise the right-hand-side may go unbounded above. This proves (b).

Now, let $\mu = 0$, the above inequality becomes

$$
\bar{\mu}^T g(\bar{x}) \geq 0.
$$

However, $\bar{\mu} \geq 0$ and $g(\bar{x}) \leq 0$ imply that

$$
\bar{\mu}^T g(\bar{x}) \leq 0.
$$

Hence $\bar{\mu}^T g(\bar{x}) = 0$. This proves (c).

$(Part 2)$

Suppose that $(\bar{x}, \bar{\mu}, \bar{\lambda})$ with $\bar{x} \in X$ and $\bar{\mu} \geq 0$ such that $(a), (b), (c)$ hold. Then, by (a)

 $\ell(\bar{x}, \bar{\mu}, \bar{\lambda}) \leq \ell(x, \bar{\mu}, \bar{\lambda}), \ \forall \ x \in X.$

By (b) and (c) $\ell(\bar{x}, \bar{\mu}, \bar{\lambda}) = f(\bar{x}) + \bar{\mu}^T g(\bar{x}) + \bar{\lambda}^T h(\bar{x}) = f(\bar{x})$ $\geq f(\bar{x}) + \mu^T g(\bar{x}) + \lambda^T h(\bar{x})$ $=\ell(\bar{x},\mu,\lambda)$ with $\mu \in E^p_+$ and $\lambda \in E^m$.

Hence $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point solution.

Saddle point theorem

Theorem 2:

 $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point solution of $\ell(x, \mu, \lambda)$ if and only if \bar{x} is a primal optimal solution, $(\bar{\mu}, \bar{\lambda})$ is a dual optimal solution and $f(\bar{x}) = \phi(\bar{\mu}, \bar{\lambda}).$

Proof: (Part 1)

Let $(\bar{x}, \bar{\mu}, \bar{\lambda})$ be a saddle point solution of $\ell(x,\mu,\lambda).$

By (b) of Theorem 1, \bar{x} is primal feasible. Since $\bar{\mu} \geq 0$, $(\bar{\mu}, \bar{\lambda})$ is dual feasible. Combing $(a), (b), and (c), we have$

$$
\phi(\bar{\mu}, \bar{\lambda}) = \ell(\bar{x}, \bar{\mu}, \bar{\lambda})
$$

= $f(\bar{x}) + \bar{\mu}^T g(\bar{x}) + \bar{\lambda}^T h(\bar{x})$
= $f(\bar{x}).$

By the Weak Duality Theorem, we know that \bar{x} is primal optimal and $(\bar{\mu}, \bar{\lambda})$ is dual optimal. $(Part 2)$

Let \bar{x} and $(\bar{\mu}, \bar{\lambda})$ be optimal solutions to (P) and (D) , respectively, with

$$
f(\bar{x})=\phi(\bar{\mu},\bar{\lambda}).
$$

Hence, we have $\bar{x} \in X$, $g(\bar{x}) \leq 0$, $h(\bar{x}) = 0$ and $\bar{\mu} \geq 0$. Moreover,

$$
\begin{aligned} \phi(\bar{\mu}, \bar{\lambda}) &\triangleq \inf_{x \in X} \{ f(x) + \bar{\mu}^T g(x) + \bar{\lambda}^T h(x) \} \\ &\leq f(\bar{x}) + \bar{\mu}^T g(\bar{x}) + \bar{\lambda}^T h(\bar{x}) \\ &= f(\bar{x}) + \bar{\mu}^T g(\bar{x}) \\ &\leq f(\bar{x}) \end{aligned}
$$

But $\phi(\bar{\mu}, \bar{\lambda}) = f(\bar{x})$ is given, the inequalities become equalities. Hence $\mu^T g(\bar{x}) = 0$ and

$$
\ell(\bar{x}, \bar{\mu}, \bar{\lambda}) = f(\bar{x}) = \phi(\bar{\mu}, \bar{\lambda})
$$

$$
= \underset{x \in X}{\text{minimum }} \ell(x, \bar{\mu}, \bar{\lambda})
$$

By Theorem 1, we know $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point solution to $\ell(x, \mu, \lambda)$.

Saddle point and KKT conditions

Question:

How does saddle point optimality relate to the $K-KT$ conditions?

Theorem 3:

Let $\bar{x} \in \mathscr{F}$ satisfies the K-K-T conditions with $\bar{\mu} \in E^{p}_{+}$ and $\bar{\lambda} \in E^{m}$.

Suppose that f, g_i $(i \in I(\bar{x}))$ are convex at \bar{x} , and that h_i is affine for those with $\bar{\lambda}_i \neq 0$.

Then, $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point of $\ell(x, \mu, \lambda)$.

Conversely, let $(\bar{x}, \bar{\mu}, \bar{\lambda})$ be a saddle point solution of $\ell(x,\mu,\lambda)$ with $\bar{x} \in \text{int } X$. Then \bar{x} is primal feasible and $(\bar{x}, \bar{\mu}, \bar{\lambda})$ satisfies the K-K-T conditions.

Proof

$(Part 1)$

Let $\bar{x} \in \mathscr{F}, \ \bar{\mu} \in E_{+}^{p}, \ \bar{\lambda} \in E^{m}$ and $(\bar{x}, \bar{\mu}, \bar{\lambda})$ satisfies the K-K-T conditions, i.e.,

$$
\nabla f(\bar{x}) + \bar{\mu}^T \nabla g(\bar{x}) + \bar{\lambda}^T \nabla h(\bar{x}) = 0
$$

$$
\bar{\mu}^T g(\bar{x}) = 0.
$$
 (*)

By convexity and linearity of f, g_i and h_j , we have

$$
f(x) \ge f(x) + \nabla f(x)(x - x),
$$

\n
$$
g_i(x) \ge g_i(x) + \nabla g_i(x)(x - x), \quad i \in I(x),
$$

\n
$$
h_j(x) = h_j(x) + \nabla h_j(x)(x - x), \quad j = 1, \dots, m, \ \lambda_j \ne 0,
$$

\nfor $x \in X$.

Multiplying the second inequality by $\bar{\mu}_i$ and the third inequality by $\bar{\lambda}_i$, adding to the first inequality, and noting $(*)$, it follows from the definition of ℓ that

$$
\ell(x,\bar{\mu},\bar{\lambda}) \ge \ell(\bar{x},\bar{\mu},\bar{\lambda}), \ \forall \ x \in X.
$$

Moreover, since $q(\bar{x}) \leq 0$, $h(\bar{x}) = 0$ and $\bar{\mu}^T q(\bar{x}) = 0$, we have $\ell(\bar{x}, \mu, \lambda) \leq \ell(\bar{x}, \bar{\mu}, \bar{\lambda})$ for $\mu \in E_{\perp}^p$ and $\lambda \in E^m$. Hence $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point solution.

$(Part 2)$

Suppose that $(\bar{x}, \bar{\mu}, \bar{\lambda})$ with $\bar{x} \in \text{int } X$ and $\bar{\mu} \geq 0$ is a saddle point solution. Since $\ell(\bar{x}, \mu, \lambda) \leq \ell(\bar{x}, \bar{\mu}, \bar{\lambda})$ for $\mu \in E_{+}^{p}$ and $\lambda \in E^{m}$. Like in Theorem 1 (Part 1), we have $q(\bar{x}) \leq 0$, $h(\bar{x}) = 0$ and $\bar{\mu}^T q(\bar{x}) = 0$.

Hence \bar{x} is primal feasible. Moreover \bar{x} is a primal optimal solution because $\ell(\bar{x}, \mu, \lambda) \leq \ell(\bar{x}, \bar{\mu}, \bar{\lambda})$ for $x \in X$.

Since $\bar{x} \in \text{int } X$, we have $\nabla_x \ell(\bar{x}, \bar{\mu}, \bar{\lambda}) = 0$, i.e.,

$$
\nabla f(\bar{x}) + \bar{\mu}^T \nabla g(\bar{x}) + \bar{\lambda}^T \nabla h(\bar{x}) = 0
$$

This completes the proof.