LECTURE 8: CONSTRAINED
OPTIMIZATION — LAGRANGIAN
DUAL PROBLEM

1. Lagrangian dual problem
2. Duality gap
3. Saddle point solution



Lagrangian dual problem

Primal Problem: Lagrangian Dual Problem:
mininize flz) ) maximize (), i)
M st We)=0 = AeR” SO
lr) <0~ pekl

reX v of )= o) 4+l



L
Property 1 — weak duality

Let ¥ be a primal feasible solution and

(A, 1) be a dual feasible solution.
Then

SO) = Inf () + ATh(x) + AT g(x)}

< f(Z) + A h(Z) + i’ g(T)
=0 <0

< f(Z).



L
Weak duality theorem

Theorem(Weak Duality Theorem): Corollary 2:

Tet 7 be nrimal feasible and (i) be dual Let * be primal feasible and ()_\,/1) be dual
et . be primal feasible an ( aﬂ) e dua fosible T f(:f:) _ qﬁ(j\,ﬂ), e e (p)
feasible. Then, o
and (A, fi) solves (LD).
o(\ i) < f(Z).
Corollary 3:

If sup o\ pt) = +0c, then (P) is infeasible.
(\n)e?

Corollary 1:

mf f(x)> sup o),
weﬁf( )_ (A’“)I;@QS( ﬂ) Corollary 4:

where 7 = {r€ X[ gfz) <0, md h(r) =0}, 1f inf f(x) = —o0, then 6(A, p) = ~oc for
7={hp) [\ B e BL) =t




Property 2 — concavity and subgradient

Let X € E™ be nonempty and compact,

f,g,h be continuous. Then,

(a) 6(\.p) = it {f(x) + N"h(z) + " g(x)}
is well defined on E™ x E.

(b) &(A, i) is concave over E™ x EV.
Proof: Given any w € (0, 1),

d(wh + (1 — W)\, wii + (1 — w)

)

=i

> wo(A i) + (1= w)o(\, i),
(c) Given any (\.ji) € E™ x EY, define

X(\ i) £ {7 € X | # minimizes

flx) + ATh(z) + " g(x) over X}.

Then X (. ji) # ¢ in our setting.

(d) For any = € X (. f1).

¢\ ) = inf {f(2) + AT h(x) +p"g(a)}

< f(@) + ATh(@) + p' g(7)

=f(@) + A =N"hZ) + (n— )" 9(T)
+ATh(Z) + B g(%)

= oA\, 1) + (N =N h(z) + (n — )" g(2).

9(7)
(A ).
(e) If X(\, 1) is singleton, and 7 € X (\, i),
then ¢ is differentiable at (X, /i) and

h(z) \ . .
= is a subgradient of ¢ at



Property 3 — duality gap
- Duality gap may exist

(a) f is not convex.

Example 1: (b) z* =1 and v* = f(a*) = 1.
Minimize f(r) = 2° () d(N) = ig£{$3 + Mz —1)}

s.t. h(r)=2x-1=0 = inf {z* + Az — A}

relR
re Bl

[ ., A>0

=94 —oc, A=0
| —o0, A<DO.

(e) Can you check the local behavior of ¢(\) o o
around rz* =1 and \* = -3 7 (d) ¢(A*) = —c0 # f(z*) = L.



L
Example of duality gap

Example 2 (Bazaraa/Sherali/Shetty p. 205-206) (d) (;5(}") — mli,l{ 2$1 4+ 25 + )l(il?l + o — 3)}
re

P) Minimize f(x)= —2x1 + 22 —4—|—5)t:, if )&E—l
m: ri+10 —3=0

IOBGO I e

(a) X is compact, but not convex.

(b) Only (;) and (?) are feasible.
[—]

(c¢) z* = (?) with v* = f(z*) = —

;‘31'-

(€) A* =2 with ¢(A\*) = —6 # —3 = f(z*) !



L
Property 4 — strong duality

Duality gap vanishes only under proper
conditions — Strong Duality Theorem

e Theorem: (Bazaraa/Sherali/Shetty p.208)

Assume that

is achieved at an (A, z) with g = 0.

(i) X # 0 and is convex;
Then,
(ii) f,g are convex and h is affine;
inf = A L).

(iii) (CQ) There exists € X such that e F f(@) ( f;lé_@ ?(A 1)

(2) 9(z) < Moreover, if the inf is finite, then sup &), p)

(b) hiz) = < ach o with g0

)

(c) 0 € int [h {h(:r”ﬁ? € X}] If the inf is achieved at z, then ﬂTQ(f) = 0.



Geometric interpretation of LD

Consider a case with only one inequality

constraint:
. Y T
min  f(z) max (s NG —— o X
(P) st. gi(e) <0 st p20 (LD) \ E\\ ——/%
ex w=giasma) S| AN
' S T (810, F ()

Let (y.o) o7 - D slope = —u
G%{(y,z)\y:gl(a:),z:f(m) for some z € X }. . };
1. (P) says that “on the (y, z) plane, we are looking oy slope = —

for a point in G’ with y < 0 and a minimum
ordinate.”

2. () = inf {f(z) + pon (2)}

Z+py

Note that the contour of
=z 4+ [y

is a line in the (y, z) plane with slope = —p

(< 0) and intercept = « on the z axis.

3. (LD) says that we should find the slope of the
supporting hyperplane such that its intercept

on the z axis is maximum.

4. When X is convex and f, g are convex,
must be convex. Its supporting hyperplane
satisfies that



L
Picture of duality gap

Duality Gap

Duality Gap




Full Lagrangian dual

Minimize f(x) = x3
st —-1<x<1
x € Et
Easy to observe x* = -1, f(x*) = —1.

Full Lagrangian dual
-LetX ={x € E'}.
¢ (f)(l«l) — infxEEl[xB + [J.l(x — 1) + Hz(—x — 1)] for U1, Up > 0.

- ¢p(u) = —oo because x3 + g (x — 1) + pp(—x — 1) » —oo
dsS X — —00,



Partial Lagrangian dual (1)

Minimize f(x) = x3
st. —-1<x<1
x € E1

We know x* = —1, f(x*) = —1.

Partial Lagrangian dual (1):

- LetX ={x € E'|x > —1}.

- ¢p(u) = infys_q[x3 + u(x — 1)] foru = 0.

- x* = —1 because x3 + u(x — 1) is increasing w.r.t. x.

- o) =—1-2u.

Dual: Maximize p(u) = —1 — 2u
s.t. u=0

=0, =-1.



L
Partial Lagrangian dual (2)

Minimize f(x) = x3
st. —-1<x<1
x € E!
We know x* = —1, f(x*) = —1.

Partial Lagrangian dual (2):

-letX ={x e El|x <1}

() = infyeq [x* + p(—x — 1)] for u = 0.

- ¢p(u) = —oo because x3 + u(—x — 1) » —0 as x - —oo.



Lagrangian dual of LP

Example 1 (Linear Programming)

T

minimize c¢'x
(P) s.t. Az =10
r =0

Let X ={z e E" |z = 0}.

#() £ fnf{clz + AT (b — Az)) maximize 6(\) = b7\
= ATb+ inf {(c" — AT A)z} (LD) sk, ATA<e

B { Mb, if ¢T —\TA >0, A unrestricted

—o0, otherwise.



L
Lagrangian dual of QP

Example 2 ( Quadratic Programming)

minimize %R:T Qr + 'z

(QP) s.t. Az < b

where () is positive semi-definite.

Let X = E™.
¢(p) = inf { #'Qu+ 'z 4+ p' (Az - D)}
mEE“ J
convex for :n}r given p
The necessary and sufficient conditions for a maximize 32"Qz +c'z+p"(Az - b)
minimum is that (LD) st. Qr+ATpu4+e=0

Qr+ATp+e=0. o0,



L
Lagrangian dual of QP

Since ¢’z + pf Az = —27Qz, we have When () is positive definite, then

ot =-Q e+ AT
maximize — mTQm —bTp @ 2

(Dorn’s Dual) st. Qe+ ATp=—c
- 6(n) = $1Q7" (e + ATH)]TQIQ (e + ATp)
) —TQ e+ ATp)
T (~AQ e+ ATp) —b)
=L, E—AQ‘lAT)J p+pT (b - AQ—lcl
D: negat;e definite E

1.T-
—ECQIE

and

maximize 3 Li"Dp+ptd—L1c"Q e
(LD) st.  p=0.



Saddle point solution

minimize f(x)

(NLP) 8.t \ Lagrangian function
=" (., N) 2 (@) + 1Tg(a) + ATh(a)
hz)=0 §F sHy A) = g :
re X

.,

- Definition (Z,j1,\) € E™™*P i3 called a saddle point
(solution) of #(x, , ) if
(i) ze X,
(i) =0,
(it) (T, A, p) < Uz, [1,\) < Uz, 1, N),
YereX peEY, A€ E™




L
Saddle point and duality gap

- Basic idea : The existence of a saddle point solution to the
Lagrangian function is a necessary and sufficient
condition for the absence of a duality gap!

Theorem 1:
Let € X and fi > 0. Then, (Z,/1,)) is a

saddle point solution to /(z, t, A) if and only
if

(a) ((Z. i, \) = 1111;1611;(112(3 O, i, ),

(b) g(z) <0 and h(z)=0,

(c) 7" g(%) = 0.



Proof

Proof: (Part 1)
Let (%, ji, A) be a saddle point solution.

By definition, we know (a) holds.

Moreover,

f(@)+p"g(@)+ATh(z) = f(z)+p"g(z)+ AT h(z),
YueEY, Ae E™.

This implies that g(z) <0 and h(z) =0,
otherwise the right-hand-side may go unbounded
above. This proves (b).

Now, let p = 0, the above inequality becomes
il g(z) = 0.

However, i > 0 and g(f) < 0 imply that
il g(z) < 0.

Hence ji’ g(Z) = 0. This proves (c).

(Part 2)

Suppose that (z,f,A) with 2 € X and g > 0 such
that (a),(b).(c) hold. Then, by (a)

A) < f(z,p,A), Yz eX.

—
B3
:F:I
et

Hence (7, i, A) is a saddle point solution.



Saddle point theorem

Theorem 2: (Part 2)

(£, ji, A) is a saddle point solution of £(x, g, A)
if and only if T is a primal optimal solution,

Let # and (fi, A) be optimal solutions to (P)
and (D), respectively, with

f(z) = é(a, ).
Hence, we have 7 € X, g(z) <0, h(Z) =10
and i > 0. Moreover,

(fi, A) is a dual optimal solution and
f(z) = o(n, X).

Proof: (Part 1)

i 6. %) 2 inf {f(x) + T g(z) + AT h(z)}

Let (#, /i, A) be a saddle point solution of
((z, 1, N).

By (b) of Theorem 1, ¥ is primal feasible.
Since ji = 0, (fi, A) is dual feasible. Combing
(a), (b), and (c), we have
#(71, X) = £(%, i, A)

= f(z) + " g(z) + ATh(z)

= f(z).
By the Weak Duality Theorem, we know that
¥ is primal optimal and (i, A) is dual optimal.

< f(z) + pT (%) + ATh(z)
= f(z) + p' g(7)
< f(z)
But ¢(ji, A) = f(¥) is given, the inequalities
become equalities. Hence u® g(z) = 0 and
El:i:ﬁ1 i} = f{f:l = ¢{Jﬁ': 'I:I

= 1nini £z, fi, A).
]]].IE_IED-%HDI (@, i, A)

By Theorem 1, we know (&, fi, A) is a saddle
point solution to £{x, g, A).



L
Saddle point and KKT conditions

Question:

How does saddle point optimality relate to
the K-K-T conditions?

Theorem 3:

Let 7 € F satisfies the K-K-T conditions ~ Conversely, let (Z, i, A) be a saddle point
with i € E and A€ E™. solution of £(z, 1, \) with # € int X. Then z

Suppose that f,g; (i € I(%)) are convex at z, 15 primal feasible and (£, i, A) satisfies the
and that h; is affine for those with A; 0. K-K-T conditions.

Then,(z, fi, A) is a saddle point of £(z, p, A).



Proof

(Part 1)

Let z € #, pe EY, Ae E™ and (Z,1, A)
satisfies the K-K-T conditions, i.e.,

ViE)+a'Vg(#) +XNTVh(Z) =0 %)
i g(z)=0.

By convexity and linearity of f, g; and h;, we
have

flz) = f(z) +¥f(z)(x —z),
gi(r) = gi(z) +¥Vgi(z)(z— 1), icl(z),

hi(z)= hi(2) +Vh;(2)(z—2), j=1,---.m, A; #0,

forzec X.

Multiplying the second inequality by f; and
the third inequality by A;, adding to the first
inequality, and noting (*), it follows from the
definition of £ that

fx, i, A) = £z, 1, ), Vae X,

Moreover, since g(z) < 0, h(z) =0 and
it g(x) = 0, we have

f(z,p,A) < €(z, 3, A) for p € EF and A € E™,

Hence (%, i, A) is a saddle point solution.

(Part. 2)

Suppose that (£, i, A) with # € int X and

i = 0 is a saddle point solution. Since
((z,p,A) < €(z, 31, A) for p € EF and A € E™.
Like in Theorem 1 (Part 1), we have

9(7) < 0, h(%) =0 and 7 g(z) = 0.

Hence 7 is primal feasible. Moreover T is a
primal optimal solution because

£z, pu, N) < €(z,3,A) forx e X.

Since # € int X, we have V./(z, i, A) =0,
le.,

V(@) +a"'Vg(z) + AT Vh(zZ) =0

This completes the proof.



	706-Lecture-8-2024F-New
	Lecture 8: constrained Optimization – Lagrangian Dual Problem
	Lagrangian dual problem
	Property 1 – weak duality
	Weak duality theorem
	Property 2 – concavity and subgradient
	Property 3 – duality gap
	Example of duality gap
	Property 4 – strong duality
	Geometric interpretation of LD
	Picture of duality gap
	Full Lagrangian dual
	Partial Lagrangian dual (1)
	Partial Lagrangian dual (2)
	Lagrangian dual of LP
	Lagrangian dual of QP
	Lagrangian dual of QP
	Saddle point solution
	Saddle point and duality gap
	Proof
	Saddle point theorem
	Saddle point and KKT conditions
	Proof


