Issue date: 10/23/2024

Due date: 10/31/2024

1. (20 points)

Use the KKT conditions to find the local optimum solutions of the following problem:

Minimize
$$f(x) = x_1^2 - x_2 + 1$$

s.t. $h(x) = x_1^2 + x_2^2 = 1$
 $x \in \Omega = E^2$

2. (20 points)

Use the KKT conditions to find the local optimum solutions of the following problem:

Minimize
$$f(x) = x_1^2 - x_2 + 1$$

s.t. $g(x) = x_1^2 + x_2^2 \le 1$
 $x \in \Omega = E^2$

3. (20 points)

Use the KKT conditions to find the local optimum solutions of the following problem:

Minimize
$$f(x) = x_1^2 - x_2 + 1$$

s.t. $h(x) = x_2 - \frac{\sqrt{2}}{2} = 0$
 $g(x) = x_1^2 + x_2^2 \le 1$
 $x \in \Omega = E^2$

4. (10 points)

Let $h(\cdot): E^n \to E^1$ be a real-valued function and $d \in E^n$ be a vector of moving direction. We know that h(x) = 0 represents an (n - 1) - dimensional surface S in E^n .

Is the following statement true or false? Why?

"At a point $\bar{x} \in E^n$ lying on the surface *S*, i.e., $h(\bar{x}) = 0$, *d* is a feasible direction for \bar{x} to move **if and only if** $\nabla h(\bar{x}) d = 0$."

5. (10 points)

Let $g(\cdot): E^n \to E^1$ be a real-valued function and $d \in E^n$ be a vector of moving direction. We know that $g(x) \le 0$ represents an n - dimensional "half space" in E^n .

Is the following statement true or false? Why?

"Assume that $g(\cdot)$ is an active constraint at a point $\bar{x} \in E^n$, i.e., $g(\bar{x}) = 0$, d is a feasible direction for \bar{x} to move if and only if $\nabla g(\bar{x}) d \leq 0$."

- 6. (20 points)
 - (a) For the KKT Theorem stated in Lecture 6 (Slide #11), interpret the meaning of the first requirement in English, i.e.,

"
$$\nabla f(x^*) + \lambda^T \nabla h(x^*) + \mu^T \nabla g(x^*) = 0$$
 with $\lambda \in E^m$ and $\mu \in E_+^p$ ".
Remember that $h(x) = (h_1(x), \dots, h_m(x))^T$ and $g(x) = (g_1(x), \dots, g_p(x))^T$.

(b) For the KKT Theorem stated in Lecture 6 (Slide #11), interpret the meaning of the second requirement in English, i.e.,

" $\mu^T g(x^*) = 0$ with $g(x^*) \le 0$ and $\mu \in E^p_+$ ".

(c) Putting (a) and (b) together, what is the role of the Lagrange multiplies λ and μ playing in the KKT conditions?