LECTURE 9: CONSTRAINED NLP
APPLICATIONS

Constrained optimization models for machine learning
1. Support vector machines for data classification

2. Support vector regression for data regression

3. Neural networks



L
Support vector machines (SVM)

- Support vector machines are mainly for pattern
recognition in supervised machine learning.

- SVM is commonly used for classification (recognition,
diagnosis, preference, prediction, etc.)

- SVR means support vector regression

- SVC means support vector clustering (unsupervised
learning)



Bi-classification

- Problem facing:
We have a set of N data points {x1, x?, ..., 2V}, x* € R", in
two different classes labeled by y; € {—-1,1},i=1,...,N.
Given a new data point x € R", should we label it with
y=1lory=-17
- Decision making: How? and Why?




Contours of affine (linear) function

- Define H, = {xcR"a’x+b=a}

HY = {xeR"a"x+b > a} a\

- A hyperplane in R™ with a being its normal vector.
- Moving along a will increase f(x) = a’x+b, «— H

H

9 H:={xecR'la"x +b<a}



Contours of affine function

- Given x € R" and H,, distance (x, H,) = ?

- Distance betweenxand H, is d(x, H,) = |T|;”f|




L
Support vector machines — basic ideas

¥y Hy | H; Hy

- Linearly separable

e Given a set of points {x!,...,x"} with binary labels y; € {—1,1}

e Find a hyperplane that strictly separates the two classes.

alx'+b>0 if 9, =1

Toi :
. yila'x"+0) =20, +=1,...,N.
alx'+b<0 ify =—1 ( )



L
Support vector machines — basic ideas

- Which one to choose? (generalizability)

Xz




Linear support vector machine (LSVM) — basic model

- Linear separation with maximum margin (distance)

2
max
foll.
st yi(w!x' + b) > 1
Vi=1,...,N
weR"beER
equivalently,
o wlle
2
st y(w!x" +b)>1
Vi=1,...,N.




L
Linear SVM (hard margin) — LSVM model

- Primal LSVM
min  ~ [|wl|3
st. y(wlxt+b)=>1,i=1,2,..,N (LSVM)
weR Db eER

- Itis a linearly constrained convex quadratic program with
n + 1 variables and N inequality constraints.

- Implications?



L
LSVM Classifier

- LSVM provides (w, b) to form a classifier for
bi-classification:

- Given an input data point x € R"
class; gy (x) = sign (W'x + b)
where

. +1, if y>0
S‘gn(Y)={—1 if33]1<0



Linear SVM (hard margin) — LSVM model

- What else can be say about LSVM?
- Dual LSVM
- Optimality conditions
- Solution methods



Lagrangian dual approach
- Primal LSVM
min  ~ [|wl|3
st. y(wW'xi+b)>1,i=12,.,N (LSVM)
weR b ER
- Lagrangian multiplier method.

- associating the it"constraint, assign a multiplier a;; > 0
to construct the Lagrangian function

1 .
Liw,b,a) = 5 w3 + =N a;(1 — Yi(wa‘ + b))

* a; indicates the influence of the data point (x%,y;)



L
Lagrangian dual approach

- Stationary point of the Lagrangian function

1 .
Llw,b,«a) = 5 w3 + =N a;(1 — Yi(wa‘ + b))

Lagrangian dual function
h(a) £ minyern per LW, b, @)

- Optimality conditions:
V,L(w,b,a) =0 = w =3I a;y;x
VpLw,b,a) = 0= N _a;y;, =0

= dual objective function

h(a) = —- (Zz 1%3’15‘71)71 Ziv 1‘%3’15\7 + Zl 1%



L
Lagrangian dual approach

KKT conditions for LSVM:
- Stationarity
w=2L a;y;x' and I a;y; =0
- Primal feasibility
yiwlxt+b) =1, i=1,2,..,N
- Dual feasibility
a; =0, 1=12,..,N
- Complementary slackness
a;(1—y;(wl'x*+ b)) =0



L
Dual linear SVM (DLSVM)

- Lagrangian dual model

max '_Z 12 1a1yl(xl)Tx}y}a} + Zl 1 &
s.t. N a;y; =0 (DLSVM)
a; > O,i = 1,...,N

- The Hessian of the dual objective function
h(a) = ——aTHa + YN a;is
H = Diag(y)X"XDiag(y) = 0

- DLSVM is a convex quadratic program with N nonnegative
variables and 1 linear equality constraint.



R - :
LSVM or DLSVM ?

- Which one to solve? Why?
- LSVM or DLSM?
- how aboutn > N and N > n?

- How are they related?
- primal — dual relation



L
Relations of LSVM and DLSVM

- Key relations:
1. Convex QP pair means there is no duality gap!
2. Complementary slackness says that
ai(y;w'xt+b) —1)=0,vi=1,2,..,N

(a) a; = 0 holds for data point x* not on separation hyperplane

(inactive constraint means x! plays no role)
(b) a; > 0 means the point x* lies on separation hyperplane
(active constraint means x* is a supporting vector)

3. Dual to primal conversion says that
w = Zliv=1 a;yix'
For a point x! on the hyperplane, since y/ = 1,
yiwTxt+b) =1 o wlxl +b =y,

b=y, —wxt



Supporting vectors

- Picture from “C19 Machine Learning Hilary 2015 A. Zisserman”

f(x) = Z ayi (%' x) -H? o

|
v

®
support vectors



Dual LSVM Classifier

- DLSVM provides a@ € RY to form a classifier of bi-
classification by takingS ={i|a; >0, i =1, ...,N}
and b =y, — Qs @;y;x)Tx" for any particular k € S.

- Given an input data point x € R"
classprsym (X) = sign(Ties @ yi(x)"x + b)
where

. +1, if y>0
S‘gn(Y)={—1 if33]1<0



D
Primal LSVM vs. Dual LSVM

- SVM classifier
classsym (%) = sign(f (x))

- Primal version (LSVM)
f(x) =wlx+b :learning from data the normal
vector and intercept
- Dual version (DLSVM)
fx) = Yies ayi () x +b
. learning from data the role of
each data point



Primal LSVM vs. Dual LSVM
- Primal version (LSVM)

f(x) =wlx+b

- Dual version (DLSVM)

f(x) = Yies a;v; (xDTx + b

Potentials of DLSVM:

1.

Its dimensionality is fixed !

-- N variables and one linear equality constraint

-- solely determined by the number of data points N
-- independent of the size of each data point n.

The setS = {a; | ; > 0}is in general very sparse!
-- easy to store and update



Approximate LSVM considering generalizability

- Basic Idea: Open the margin to allow violation with
penalized tolerance.

- Original model
N
min Z max{0, 1 — y;(a’x" + b)
i=1

- New model

min %”W”% +CYN i max{0,1—y;(wl'x! + b)}

where C > 0is a given parameter.

** C is an indicator emphasizing possible violations.

When C — + oo, new model returns to the original model.



Linear SVM with soft margin

- Reformulate the new model
min é lwll3 + € XN, max{0,1 — y;(w'x* + b)}

by allowing violations y;(w"x' + b) < 1 (a soft margin)

- Linear soft SVM
min ;IIW“% +C YN §
st. y(wlxt+b)=>1-¢§,i=1,..,N (LSSVM)
weR? beR, EeRY

where C > 0is a given parameter.
*When C - + o, & > 0 and LSSVM becomes LSVM, but it may fail.



L
Linear soft SVM (LSSVM)

- Geometric meaning and complexity
min ~[lwli3 + C I, &
st. y(wl'xt+b)=1-¢,i=1,..,N (LSSVM)
weR? beR, §€RY
where C > 0is a given parameter.

- Linearly constrained convex dooe T
quadratic program with _
n+ 1+ N variablesand N
inequality constraints.




R - :
LSVM vs. LSSVM

- LSVM works only for those linearly separable datasets.
-- Why?

- LSSVM is always feasible even a dataset is not linearly
separable.

-- Why?
- For a linearly separable dataset, will LSVM and LSSVM
produce the same separation hyperplane?
-- Why?
- LSSVM has N more nonnegative variables than LSVM.
What can we expect to meet for the dual LSSVM?
-- N more constraints?



L
Lagrangian dual approach

- Stationary point of the Lagrangian function
L(w,b,§ a,0) = —||w||2 + O3 & +3 0 (1- & —yi(Wixl + b)) — 3, 6,6,
where a; > 0 and 6; = 0.
Lagrangian dual function
h(a,0) = min,egn Leg gegd LW, b, §, a, 6)
Optimality conditions:
VyL(w,b,&a,0) =0=>w=3N_a,y;x"
VpL(w,b,&a,0) =0= X a;y;, =0
Vel(w,b,§,0,0) =0=>C —a; = 6; 20

= a; <C
= dual objective function

h(a) =—- (Zz 1“13’15‘71)71 1%3’}-"\C + Ziv 1%



L
Dual linear soft SVM (DLSSVM)

- Lagrangian dual model
1 . .
max - EZIiV=1 szy=1 “iJ’i((xl)Tx])J’jaj + Y a;
S.t. IiV=1 a;y; = 0 (DLSSVM)
0<aq;<C, i=12,..,N
- The Hessian of the objective function in a is
H = Diag(y)X"XDiag(y) > 0

- DLSSM is convex quadratic program with N bounded
variables and 1 linear equality constraint.

- The quadratic term is determined by an N X N (kernel) matrix (in
terms of the # of data points)

K = XTX with K;; = (x")"x/ (regardless the
dimensionality of each data point x*).



L
Relations of LSSVM and DLSSVM

- Key relations:

1. Convex QP pair means there is no duality gap!
2. Complementary slackness says that
ai(viw'xt+b)—1+¢&)=0,Vi=1,2,..,N
(a) a; = 0 holds for data point x* with y;(w"x' + b) > 1 - §;
(inactive constraint means such x* plays no role)
(b) € > a; > 0 means the point x* with y;(wix! +b) =1-¢§ <1
(active constraint means x! is a supporting vector)

(c) support vectors are x's with y;(w'x' + b) < 1 including those
correspondingto C > a; > 0.

3. Dual to primal conversion says that
w= 3L, ayxt
For a point x* on the hyperplane H, or H_,, since y? = 1,
yiwlx'+b)=1 eowlxi+b=y;, © b=y, —wlx'



Dual LSSVM

- Picture taken from David Sontag, SVM & Kernels Lecture 6.

Non-support Vectors:
. Q'J:O

*moving them will not
change w

W = Zozjijj

J

Final solution tends to
be sparse

+ @;=0 for most |

«don’t need to store these
points to compute w or make
predictions

Support \‘/ectors:

. ajzo




R - :
LSSVM vs. DLSSVM ?

- Which one to solve? Why?
- LSSVM or DLSSM?
- how aboutn > N and N > n?

- What's the effect of choosing different
parameter value of C?

- Classifier?
- classpssym (x) =7
- classprssym(x) =7



Comparisons and discussions

- LSVM vs. Approximate LSVM
- applicability?
- equivalency?
- complexity?

- LSVM vs. LSSVM

- LSSVM vs. Approximate LSVM



L
SVM for not linearly separable data sets
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- Will LSVM, Approximate LSVM, LSSVM work ?
- How well can they be?
- Any better SVM classifier?



L
SVM for not linearly separable data sets

- Basic ideas:
1. Reformulate the problem in a higher dimensional
space for linear separability
(Kernel Method): LSVM with kernel functions

2. Adopt nonlinear surface to separate data points
apart in the original space
- Quadratic surface SVM
- Double-well potential function based SVM



D
|dea of kernel based SVM

- Feature map: a function ¢(-): R* — R!, withl > n,
that maps all data points to a higher dimensional space
for linear separation.

- Example 1: ||x]|5 < 1, [x]|5 > 1,

$1(x):R? > R?, ¢1(x) = ¢4 (2) = ( % ) - (1—|Tx||2)




L
Kernel-based soft SVM - KSSVM

- Using a feature map ¢(-) : R® - R! (I > n) to transform
the problem to a higher dimensional space for linear
separability.

- Build upon LSSVM
- Primal model

1
min E“W“% +CYN &

st. yi(wlep(x)+b)=>1-¢,i=1,..,N (KSSVM)
weR!, beR, §€RY
where C > 01is a given parameter.

** More variables involved than using LSSVM.



L
How difficult to solve DKSSVM?

- Lagrangian dual model
1
max - 52’11 Z}]y=1 a;y; Kijyja; + X a;
s.t. N a;y; =0 (DKSSVM)
0<a;<C,i=12..,N

where K;; = K(x',x/) 2 q’J(xi)TQ’J(xj)

- Given any feature map ¢, corresponding K is psd
and DKSSVM becomes a convex quadratic program
with N bounded variables and only one linear equality
constraint.

- In practice, we may use a kernel matrix K = (K;;)

without knowing the feature map ¢ (x).



L
Kernel-based soft SVM - DKSSVM

- SVM classifier

classsyy (x) = sign(f(x))

Dual version DKSSVM
f) = X, ayi p(x)Td(x) + b(ey)
= Yies @iy K(x‘,X) + b



L
Kernel matrix

- To make sure that K;; = K(x', x) is the inner product of
¢(xt) and ¢(x/) in the feature space, such that

(1) DKSSVM is an easily solved convex QP,

(2) there is a chance to solve KSSVM,

we need K to be symmetric and positive semidefinite
(Mercer’s condition).

- Commonly used kernels:
1. Polynomial kernel of degreed =1,2, ...

K(xt x)) = ((xi)ij + )¢ (homogeneous, if r = 0)
(inhomogeneous, if r > 0)

* popular in image processing



L
Polynomial kernels
-Example 1: (inhomogeneous degree 2)
For x € RY, K(x%,x7) = (x'x/ + 1)2 forr=1,d =2,
we have ¢(x)T = (1,v2x,x2) € R3 such that

d(x) p(x/) =1+ 2xix) + (x) (/)" = (xix) + 1)

Example 2: (homogeneous degree 2)
For x € R%, K(x!,x7) = ((Juc')rrslcj)2 forr =0,d = 2,
we have ¢p(x)T = (x%,V2x,x,,x5) € R® such that

b (x) o (1) =(xt)” () +(x2)’ () + 20xbxdcdad) = (1) 7 )2

**General form ¢(x): contains all polynomial terms up to degree d.



L
Kernel matrix

Commonly used kernels:
2. Gaussian kernel with o € R\{0}

. .2
x|,
202 )

* no prior information, general purpose

K(xt,x))=exp (—
**General form ¢(x) in infinite dimensional feature space.

3. Gaussian Radial basis function (RBF) kernel with y > 0
K(x',x)) =exp (—y |[x* - xf||§ )
* no prior information, general purpose

**General form ¢ (x) : see https://en.wikipedia.org/wiki/Radial_basis_function_kernel



L
Kernel matrix

Commonly used kernels:
4. Laplace RBF kernel with ¢ > 0

K(xLxl) =exp (—1/c ||x" —x7||)

*no prior information, general purpose

5. Sigmoid kernelwith > 0,60 € R
K(x',x)) = tanh (ﬁ(xi)ij -+ 9)

* proxy for neural networks



L
Quality of kernel-based SVM

- Two major factors:
1. Like LSSVM, the parameter C plays a role.

2. The choice of an appropriate kernel matrix
(and its parameters) is important.



L
Effect of kernel matrix

. Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020,CMU
Iris dataset, 1 vs 23, Polynomial Kernel degree 2 (C = 1)

- ] Degree 2 | Separable Bound | 1|




L
Effect of kernel matrix

: Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020,CMU
Iris dataset, 1 vs 23, Gaussian RBF kernel (C = 1,0 = 1)




L
Effect of kernel matrix

. Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020,CMU
Iris dataset, 1 vs 23, Gaussian RBF kernel (C = 10,0 = 1)

-]\‘ Sigma__[I] 4 [ | Separable Bound | 10




L
Effect of kernel matrix

s Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020,CMU
Chessboard dataset, Polynomial kernel (d = 10,C = 1)

Folynomial w| | Dewss | 10 ] Separale Bound T

Mo, of Support Wectors: 147 (49.0%)



L
Effect of kernel matrix

: Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020,CMU
Chessboard dataset, Gaussian RBF kernel (C = 1,0 = 2)

s oo oma [ 1|




L
Quality of kernel-based SVM

- Two major factors:
1. Like LSSVM, the parameter C plays a role.

2. The choice of an appropriate kernel matrix
(and its parameters) is important.

Question: How to choose/design right ones?
- theoretical analysis?
- computational experiments !



L
ldeas of choosing parameters

- Example: choosing parameter C

1. Define an error or score measure:
for example, MSE (mean squares error),
MAPE (mean absolute percentage error),
1/lwll3, or X, y; (Ww'x! + b), ...

2. Conduct computational experiments with different
value of C :
- statistically meaningful

3. Plot resulting error measures against C.

4. Find the elbow/ turning point value of C.

** check many other “cross-validation” methods.



L
Linear support vector regression

- Problem settings:

- Dataset { (x},y;) ER* xR |i =1,2.,,,,N} of
N data points

- tube tolerance ¢ > 0

- Aim: to find
affine map f(x) =wlx+»b
with wide margin such that

lvi— f(x')| <e,i=1,..,N

V=




Observation

- Question: How big the box tolerance ¢ should be?
- When ¢ (> 0) is too small, we may not be able to
box all data-points in the tube.




Linear soft support vector regression

- Primal model: (For a given C > 0)
Min  —|wll3 +C 3N, &
st. y,—wixt —b<e+¢,i=1,.,N (LSSVR)
yi—wixt—b>—-e-¢&,i=1,..,N
weRYLDbER,EeRY

soft margin with ¢ — insensitive loss function



D
Linear soft SVR - LSSVR

1. (LSSVR) is a convex quadratic program with
n + 1 free variables, N non-negative variables, and
2N linear inequality constraints.

2. (LSSVR) is always feasible.

3. Who are supporting vectors?

4. Any dual information?



R - :
Dual LSSVR - DLSSVR

- Lagragian
Lw,b, & a,a’,m) =-lwl3 +C I, &
Lim& — Y ai(e+& —yi+wixl +b)
—YiLiai(e+ & +yi —wix' = b)

- KKT conditions
- Primal & dual feasibility
(i)a;,a/,n; =20,i=1,...,N;
(iie+ & —yi+wixt+b>0e+é+y,—wixt—b=>0;



Dual LSSVR - DLSSVR

- Lagragian

Lw,b, & a,a’,m) =-lwl3 +C I, &
— XiLim& — X ai(e + & —yi +wixt + b)
~Zyai(e+ & +yi—whx' = b)

- KKT conditions
Stationarity
(ii)y VL = w = B (@ — a)x = 0;
(iv) VoL = X (a; — af) = 0;
V) Vel =C —ni— (i +a;) =0;
=1 =C —(aj+a;))=0and 0 < a;+a < C



Dual soft support vector regression -DLSSVR

- Dual model:
Max Z 12 _(a; —a)) <« xf>(af]—a:)
—82 Ly +a)) + 2,y (o — )
s.t. N (ag;—a))=0 (DLSSVR)

0<ai+a, <Ca =20,a =20,i=1,..,N

*Depending on y; > w’x! + b, ory; < wi'x! + b, at least
one of ; or a; = 0. So we have

Max — ;Z{-"zlzm_l(ai —ai) < xhxl > (o — a))
—e X (o +a)) + Xil v (a — )
st. YV (a—a)=0 (DLSSVR)
0<a;<C,0<a;,<(Ci=1,..,N



Dual soft support vector regression -DLSSVR

- Observations:

1. (DLSSVR) is a convex quadratic program with 2N
bounded variables and 1 linear equality constraint.

2. (DLSSVR) is independent of the size of n, which
Is absolved in the inner product of
(x)HTx) =< xt,x) >.



R - :
DLSSVR

- Dual-to-primal conversion:
- KKT (iii) say that
V,L=w—-YN (a;—a)x* =0.
Hence,
w=YN_ (a; —a})xt and

f(x) = Z}l'\l:l(ai — a:) < xi, x>+b
*This is called a “support vector expansion” of f(x).

*Whatis b ?



R - :
DLSSVR

+ KKT conditions: Complementary slackness:
(vi)a;(e+& —y;+wlxl+b) =0
(viijaj(e+ & +y; —wlxl—b) =0
(vii)n;&; = (€ — (a;+a;)) §; =0

Observations:

1. Depend on y; > wix! + b, ory; < wlx! + b,
at least one of a; or a; = 0.

2. When data-point (x%,y;) is in the tube

|J’i—(WTxi+b)|<£ = a; =0and a; = 0.



R - :
DLSSVR

» KKT conditions: Complementary slackness:
(vi)a;(e+ & —y; +wixi+b) =0
(vija(e+ & +y; —wlxt—b) =0
(vii)n;$; = (€ — (a;+a;)) §; =0

Observations:

3. When data-point (x,y;) is outside of the tube,
ly; — (WTxi+b)|>e= & >0 a;=Cora; =C.

4. a; € (0,C) ora; € (0,C)happens only when (x%,y;) lies on the tube
lyi — (WTxi +b)| = ¢

= eithery; — wWix' +b) =¢ =2 b =¢—y; + wx!,when «; € (0,C)
ory; —(wix*+b)=—e=>b=-c—y;+wlxi,when a; € (0,C)
5. Supporting vectors are indeed sparse!



R - :
DLSSVR

- Dual-to-primal conversion:
- KKT (iii) say that
V,L=w—-YN (a;—a)x* =0.
Hence,
w = 2L (a; — a))x!

b= (s—y,;+wa’:, If a; €(0,c) )

—e-yi+wTxl, if af €(0,0)

and DLSSVR prediction is

f(x) = ?I=1(ai—a§‘)<xi,x>+b



SVM-based nonlinear regression

- From linear to nonlinear regression




Kernel-based linear soft SVR

- Use a feature map ¢(-) : R® - R! (I > n) to transform the
problem to a higher dimensional space for linear

separability.

- Primal model: (For a given C > 0)
Min  —|wll3 +C 3N, &
st. yi—wlp(x)—b<e+§&,i=1,..,N(KLSSVR)
yi—wlp(x)—b=>-e—-¢,i=1,..,N
weR,beREeRY

* Dimensionality changes from n to L.



Dual kernel-based linear soft support vector regression
- Dual model:
Max — Z 12 (o —a) < p(xh), p(x)) > (aj — «; )
—e X (o +a) + Xl yi (@ — ;)

S.t. YN (a;j—a))=0 (DKLSSVR)
0<a; <(C0<q;<C,i=1,..,N

*(DKLSSVR) is a convex quadratic program with 2N
bounded variables and 1 linear equality constraint.

*(DKLSSVR) is independent of the size of n, which
is absolved in the inner product of

p(x)TP(x)) =< p(x"), p(x) >.



L
Kernel-based linear soft SVR

- Knowing an admissible kernel (Mercer’s condition)

K = (k(x,x")) with k(x,x") = p(x)Tp(x") rather
than the feature mapping ¢ (x) explicitly, we have
a kernel-based LSSVR for nonlinear regression:

Max — Z 12 (o — a)k(xt, x7) (aj — a]’-")
—e X (o +a) + Xl yi (@ — ;)
S.t. N (qj—a))=0 (DKLSSVR)
0<a; <(C0<q;<C,i=1,..,N



R - :
DLSSVR vs. DKLSSVR

- Same structure, same complexity:
Max ——Z 12 _(a; — a))k(xt, x)) (aj — a]’-")

—e X (o +a) + Xl yi (@ — ;)
S.t. N (qj—a))=0 (DKLSSVR)
0<a; <(C0<q;<C,i=1,..,N

Max — Z 12 (o —af) < xtx) > (aj — ;)
—e Yilq(a; +af) + XL, yi (@ — @)
s.t. N (qj—a))=0 (DLSSVR)

0<a; <(C0<q;<C,i=1,..,N



L
Support vector expansion of KLSSVR

- For KLSSVR
w =YL (a; — al)p(xh)
D +wa",'if a; €(0,C)
—e —y; +whxhif af € (0,C)
KLSSVR Prediction:
f(x) = Xl —a)p(x)Tp(x) + b

or
f(x) =YY (a; —a))k(x, x)+ b
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