LECTURE 10: CONSTRAINED
OPTIMIZATION — LAGRANGIAN
DUAL PROBLEM

1. Lagrangian dual problem
2. Duality gap
3. Saddle point solution



Lagrangian dual problem

Primal Problem: Lagrangian Dual Problem:
mininize flz) ) maximize 0().
M st Wr)=0 = AeR” SO
lr) <0~ pekl

reX v of )= o) 4+l



L
Property 1 — weak duality

Let ¥ be a primal feasible solution and

(A, 1) be a dual feasible solution.
Then

6O) = it {f(x) + NTh(x) + i"g(x))

< f(Z) + A h(Z)+ " g(T)
=0 <0

< f(Z).



L
Weak duality theorem

Theorem(Weak Duality Theorem): Corollary 2:

Tet 7 be nrimal feasible and (i) be dual Let ¥ be primal feasible and ()_\,;1) be dual
et . be primal feasible an ( aﬂ) e dua bt T f(:f:) _ (;5(5\,[&), e (p)
feasible. Then, o
and (A, fi) solves (LD).
o(\ i) < f(Z).
Corollary 3:

If sup o\ pt) = +0c, then (P) is infeasible.
()7

Corollary 1:

mf flx)> sup ofA,
e () (Ap)e? ( U) Corollary 4:

where # = {r e X | g(z) <0, and bz} =0}, 1t $i£;f(m) — _, then 6(\, i) = —o¢ for
bo{o)\eBrge) R0




Property 2 — concavity and subgradient

Let X € E™ be nonempty and compact, (d) For any 7 € X(A. ).
f.q.h be continuous. Then, ¢(Ap) = Inf {f (@) + AT h(x) +u"g(2)}
< f(z) + \Th(z) + pT g(z)
(a) 00\, ) = inf {f(z) + N h(x) +p"g(x)} = (@) + A = NTh(@) + (1 — 1) g(7)
is well deﬁned on E™ x EY. +ATh(E) + ' 9(%)

, . = o\ 1) + (A= NTh(Z) + (n— 1) g(%).
(b) &(A, i) is concave over E™ x EV.

Proof: Given any w € (0.1), = ( h(?) ) is a subgradient of ¢ at
d(w + (1 — W)\ wii + (1 — w)ji) (;?ﬁ)_g(x)
> wo (A, i) + (1 —w)o(A, 7). (e) If X(\, f1) is singleton, and ¥ € X (A, i),
(c) Given any (\.ji) € E™ x ET, define then ¢ is differentiable at (A, ji) and
X(\ i) 2 {7 € X | Z minimizes
f@) + ATh(z) + i"g(x) over X}. Vo(\ i) = h(T)

Then X (. ji) # ¢ in our setting. g(7)



I 1111l ~r:nlEiin
Property 3 — duality gap

- Duality gap may exist

(a) f is not convex.

Example 1: (b) z* =1 and v* = f(z*) = 1.
Minimize f(r) = 2° (¢) &(N) = iIE]lfR{:t:?' + Mz —1)}

s.t. h(r)=2x-1=0 = inf {z* + Az — A}

reER
r e Bl

[ ., A>0

=94 —oc, A=0
-0, A<O0.

“

(e) Can you check the local behavior of ¢(\) o o
around z* = 1 and \* = —3 ? (d) ¢(A*) = —o0 # f(z*) = 1.



L
Example of duality gap

Example 2 (Bazaraa/Sherali/Shetty p. 205-206) (d} (,1'5()'.) — I]l]}l{l{ 2$1 + x5 + )t(ﬂ?l + 5 — 3)}
re

P) Minimize f(x)= —2x1 + 22 —4—|—5)£:, if )ﬁi—l
m: ri+10 —3=0

HOBGO L e

Ag(A)
2

(a) X is compact, but not convex.

(b) Only (;) and (?) are feasible.
[—]

(c¢) z* = (i) with v* = f(z*) = -3.

hqr

(€) A* =2 with ¢(A\*) = —6 # —3 = f(z*) !



L
Property 4 — strong duality

Duality gap vanishes only under proper
conditions — Strong Duality Theorem

e Theorem: (Bazaraa/Sherali/Shetty p.208)

Assume that

is achieved at an (A, i) with z > 0.

(i) X # 0 and is convex;
Then,
(ii) f,g are convex and h is affine;
inf = A, Lt).

(iii) (CQ) There exists € X such that e F f(z) ( f;pe_@ oA 1)

(a) 9(z) < Moreover, if the inf is finite, then sup (A, p)

(b) hiz) = Lo with s 0

)

(c) 0 mt[ ( ) = (@)l € X3 ¢ the inf is achieved at z, then ''g(z) = 0.



Geometric interpretation of LD

Consider a case with only one inequality

constraint: B
min  f(z) max o) ey -%—‘ l- ———————————— 'f sl )2\
reX 6(u) = inf {1(0) + p ) RN /

A SR _LS_I (x)', { (I)) -

Let (. z)d o slope=—4'
G2 {(y,2)ly = gi(x),z = f(z) for some z € X }. . 'ﬁ"
1. (P) says that “on the (y, z) plane, we are looking o slope = —

for a point in G with y < 0 and a minimum
3. (LD) says that we should find the slope of the

supporting hyperplane such that its intercept
2. ¢p(p) = ﬂgg‘f;{ {f(g;) + p1gq (3;1} on the z axis is maximum.

ey

ordinate.”

4. When X is convex and f. g are convex, G
Note that the contour of must be convex. Its supporting hyperplane

satisfies that
=z + py

is a line in the (y, 2) plane with slope = —pu —~

(< 0) and intercept = a on the z axis. = 2% = f(x¥).



L
Picture of duality gap

Duality Gap

Duality Gap




Full Lagrangian dual

Minimize f(x) = x3
st —-1<x<1
x € E1
Easy to observe x* = -1, f(x*) = —1.

Full Lagrangian dual
-LetX ={x € E'}.
¢ (f)(ﬂ) — infxEEl [x3 + [ll(x — 1) + Hz(—x — 1)] for U1, Up > 0.

- ¢p(u) = —oo because x> + py (x — 1) + up(—x — 1) » —0
dsS X — —00,



Partial Lagrangian dual (1)

Minimize f(x) = x3
st. —-1<x<1
x € E1

We know x* = —1, f(x*) = —1.

Partial Lagrangian dual (1):

- letX ={x € E'|x > —-1}.

- ¢p(u) = infs_q[x3 + u(x — 1)] foru = 0.

- x* = —1 because x3 + u(x — 1) is increasing w.r.t. x.

cp(u) = —-1-2pu.

Dual: Maximize p(u) = —1 — 2u
s.t. u=0

I*l* =0, ‘f’(ﬂ*) = —1.



L
Partial Lagrangian dual (2)

Minimize f(x) = x3
st —-1<x<1
x € E!
We know x* = —1, f(x*) = —1.

Partial Lagrangian dual (2):

-letX ={x e El|x <1}

() = infyeq [x* + p(—x — 1)] for u = 0.

- ¢p(u) = —oo because x3 + u(—x — 1) » —0 as x » —oo.



Lagrangian dual of LP

Example 1 (Linear Programming)

T

minimize ¢'x
(P) s.t. Az =Db
r =0

Let X ={z € E" |z = 0}.

() £ ;%E{ch + X (b - Az)) maximize ¢(\) = bl
= ATb+ inf {(c" — AT A)z} (LD) st ATA<e

B { Mb, if T - \TA >0, A : unrestricted

—o0, otherwise.



L
Lagrangian dual of QP

Example 2 ( Quadratic Programming)

minimize %R:T Qr + 'z

(QP) s.t. Az < b

where () is positive semi-definite.

Let X = E™.
¢(p) = inf { #'Qu+c' x4 pt (Az - D)}
mEE“ J
convex for :n}r given p
The necessary and sufficient conditions for a maximize 32" Qz + ¢’z 4+ p"(Az - D)
minimum is that (LD) st.  Qr+ATp+e=0

r+ AT +e=0. p=0.
I



L
Lagrangian dual of QP

Since ¢z 4 pf Az = —2TQz, we have When Q) is positive definite, then

ot =—Q e+ AT
maximize — mTQ:r —b'p @ )

(Dorn’s Dual) st Qe+ ATp=—c
p= 0.

and
o(n) = 51Q e+ AT )" QIQ™ ¢+ AT )]
—c"Q e+ A"p)
+p (—AQ e+ ATp) - b)
= 3T (—AQ T AT )+ T (b — AQY¢)
D megave defmite 4

1. TN—
—c Q7 e

maximize 3 Li"Dp+ptd—Ltc"Q e
(LD) st.  p=0.



Saddle point solution

minimize f(x)

(NLP) 8.t \ Lagrangian function
= (., N) 2 F(@) + Tg(a) + ATh(a)
hz)=0 §F sy A) = g :
re X

4

- Definition (Z,1,\) € E™™*P i3 called a saddle point
(solution) of #(x, , A) if
(i) ze X,
(i) =0,
(it)) £(z, A, p) < Uz, [1,\) < Uz, 1, \),
YvereX, peEY, A€ E™




L
Saddle point and duality gap

- Basic idea : The existence of a saddle point solution to the
Lagrangian function is a necessary and sufficient
condition for the absence of a duality gap!

Theorem 1:
Let 7€ X and fi > 0. Then, (Z,/1,)\) is a

saddle point solution to £(z, ;. A) if and only
if

(a) 0(Z, i, \) = 1111;1&1;{1126 O, i, ),

(b) g(z) <0 and h(z)=0.

(c) i g(#) = 0.



Proof

Proof: (Part 1)
Let (%, ji, A) be a saddle point solution.

By definition, we know (a) holds.

Moreover,

f(@)+p"g(@)+ATh(z) = f(z)+p"g(z)+ AT h(z),
YpueEY, Ae E™.

This implies that g(z) <0 and h{z) =0,
otherwise the right-hand-side may go unbounded
above. This proves (b).

Now, let p = 0, the above inequality becomes
il g(z) = 0.

However, fi > 0 and g(T) < 0 imply that
il g(z) < 0.

Hence ji’ g(Z) = 0. This proves (c).

(Part 2)

Suppose that (z,,A) with 2 £ X and g > 0 such
that (a),(b).(c) hold. Then, by (a)

A) < f(z,p,A), Yz eX.

—
B3
:F:I
et

Hence (&, i, A) is a saddle point solution.



Saddle point theorem

Theorem 2: (Part 2)

(%, ji. A) is a saddle point solution of £(x, u. A)
if and only if # is a primal optimal solution,

Let # and (fi, A) be optimal solutions to (P)
and (D), respectively, with

f(z) = é(p, ).
Hence, we have £ € X, g(z) <0, h(z) =0
and @ > 0. Moreover,

(i1, A) is a dual optimal solution and

f(z) = o(m, A).

Proof: (Part 1)

i 67, X) 2 mf {f(x) + a7 g(x) + XTh(z)}

Let (#, /i, A) be a saddle point solution of
((z, 1, N).

By (b) of Theorem 1, ¥ is primal feasible.
Since ji = 0, (fi, A) is dual feasible. Combing
(a), (b), and (c), we have
#(71, X) = £(%, i, A)

= f(z) + " g(z) + ATh(z)

= f(z).
By the Weak Duality Theorem, we know that
7 is primal optimal and (@, A) is dual optimal.

< f(z) + pTg(z) + ATh(z)
= f(z) + p" g(z)
< f(z)
But ¢(j1, A) = f(¥) is given, the inequalities
become equalities. Hence u? g(z) = 0 and
(z, 1, ) = £(2) = 6(a, )

= mini £z, @, X).
minimum £(z, fi, A)

By Theorem 1, we know (#, fi, A) is a saddle
point solution to £{x, g, A).



L
Saddle point and KKT conditions

Question:

How does saddle point optimality relate to
the K-K-T conditions?

Theorem 3:

Let 7 € F satisfies the K-K-T conditions ~ Conversely, let (Z, i, A) be a saddle point
with i € E and A€ E™. solution of £z, s, A) with & € int X, Then &

Suppose that f,g; (i € I(%)) are convex at z, 15 primal feasible and (£, i, ) satisfies the
and that h; is affine for those with A; 0. K-K-T conditions.

Then,(z, fi, A) is a saddle point of £(z, p, A).



Proof

(Part 1)

Let € #, pe EY, Ae E™ and (T, 1, A)
satisfies the K-K-T conditions, i.e.,

ViE)+ ' Vg(z) +XNTVh(Z) =0 %)
' g(z)=0.

By convexity and linearity of f, g; and h;, we
have

flz) = f(z) +¥f(z)(x — ),
gi(x) = gi(z) +Vgi(z)(xz— 1), icli(z),

hi(z)= hi(2) +Vh;(2)(z—2), F=1,---.m, A; #0,

forzrec X.

Multiplying the second inequality by ji; and
the third inequality by A;, adding to the first
inequality, and noting (), it follows from the
definition of £ that

fx, i, A) = £z, 1, ), Vae X

Moreover, since g(z) < 0, h(z) = 0 and
a7 g(x) = 0, we have

((z,p,A) < €(z, 3, A) for p € EY and A € E™.

Hence (Z, i, A) is a saddle point solution.

(Part. 2)

Suppose that (Z, . A) with # € int X and

i > 0 is a saddle point solution. Since
£z, p, A) < €(z, 3, A) for p € ET and A € E™.
Like in Theorem 1 (Part 1), we have

g(7) < 0, h(%) =0 and 7 g(z) = 0.

Hence 7 is primal feasible. Moreover T is a
primal optimal solution bhecause

f(z,pu, N) < €(z,3,A) forx e X.

Since # € int X, we have V. £(%,j1, A) = 0,
Le.,

V(@) +a"'Vg(z) + AT Vh(Z) =0

This completes the proof.



