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Affine Scaling I orithll1s 

Since its introduction in 1984, Karmarkar's projective scaling algorithm has become 
the most notable interior-point method for solving linear programming problems. This 
pioneering work has stimulated a flurry of research activities in the field. Among all 
reported variants of Karmarkar' s original algorithm, the affine scaling approach especially 
attracted researchers' attention. This approach uses the simple affine transformation to 
replace Karmarkar's original projective transformation and allows people to work on the 
linear programming problems in standard form. The special simplex structure required 
by Karmarkar' s algorithm is relaxed. 

The basic affine scaling algorithm was first presented by I. I. Dikin, a Soviet 
mathematician, in 1967. Later, in 1985, the work was independently rediscovered by 
E. Barnes and R. Vanderbei, M. Meketon, and B. Freedman. They proposed using the 
(primal) affine scaling algorithm to solve the (primal) linear programs in standard form 
and established convergence proof of the algorithm. A similar algorithm, the so-called 
dual affine scaling algorithm, was designed and implemented by I. Adler, N. Karmarkar, 
M. G. C. Resende, and G. Veiga for solving (dual) linear programs in inequality form. 
Compared to the relatively cumbersome projective transformation, the implementation of 
both the primal and dual affine scaling algorithms become quite straightforward. These 
two algorithms are currently the variants subject to the widest experimentation and exhibit 
promising results, although the theoretical proof of polynomial-time complexity was lost 
in the simplified transformation. In fact, N. Megiddo and M. Shub's work indicated 
that the trajectory leading to the optimal solution provided by the basic affine scaling 
algorithms depends upon the starting solution. A bad starting solution, which is too 
close to a vertex of the feasible domain, could result in a long journey traversing all 
vertices. Nevertheless, the polynomial-time complexity of the primal and dual affine 
scaling algorithms can be reestablished by incorporating a logarithmic barrier function 
on the walls of the positive orthant to prevent an interior solution being "trapped" by the 

144 
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boundary behavior. Along this direction, a third variant, the so-called primal-dual affine 
scaling algorithm, was presented and analyzed by R. Monteiro, I. Adler, and M. G. C. 
Resende, also by M. Kojima, S. Mizuno, and A. Yoshise, in 1987. The theoretical issue 
of polynomial-time complexity was successfully addressed. 

In this chapter, we introduce and study the abovementioned variants of affine 
scaling, using an integrated theme of iterative scheme. Attentions will be focused on 
the three basic elements of an iterative scheme, namely, (1) how to start, (2) how to 
synthesize a good direction of movement, and (3) how to stop an iterative algorithm. 

7.1 PRIMAL AFFINE SCALING ALGORITHM 

Let us consider a linear programming problem in its standard form: 

Minimize cT x 

subject to Ax = b, x 2: 0 

(7 .I a) 

(7 .I b) 

where A is an m x n matrix of full row rank, b, c, and x are n-dimensional column 
vectors. 

Notice that the feasible domain of problem (7 .1) is defined by 

P = {x E R 11 I Ax= b, x 2: 0} 

We further define the relative interior of P (with respect to the affine space 
{xiAx = b}) as 

P0 = {x E R11 
1 Ax= b, x > 0} (7.2) 

An n-vector x is called an interior feasible point, or interior solution, of the linear 
programming problem, if x E P0

. Throughout this book, for any interior-point approach, 
we always make a fundamental assumption 

pO =/= ¢ 

There are several ways to find an initial interior solution to a given linear programming 
problem. The details will be discussed later. For the time being, we simply assume that 
an initial interior solution x0 is available and focus on the basic ideas of the primal affine 
scaling algorithm. 

7.1.1 Basic Ideas of Primal Affine Scaling 

Remember from Chapter 6 the two fundamental insights observed by N. Karmarkar in 
designing his algorithm. Since they are still the guiding principles for the affine scaling 
algorithms, we repeat them here: 

(1) if the current interior solution is near the center of the polytope, then it makes sense 
to move in the direction of steepest descent of the objective function to achieve a 
minimum value; 
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(2) without changing the problem in any essential way, an appropriate transformation 
can be applied to the solution space such that the current interior solution is placed 
near the center in the transformed solution space. 

In Karmarkar' s formulation, the special simplex structure 

b.= {x ERn I X!+ ... + Xn = 1, X; :=:: 0, i = 1, ... , n} 

and its center point ejn = (ljn, 1/n, ... , 1/n)T were purposely introduced for the re-
alization of the above insights. When we directly work on the standard-form problem, 
the simplex structure is no longer available, and the feasible domain could become an 
unbounded polyhedral set. All the structure remaining is the intersection of the affine 
space {x E Rn I Ax = b} formed by the explicit constraints and the positive orthant 
{x E Rn 1 x :=:: 0} required by the nonnegativity constraints. It is obvious that the non­
negative orthant does not have a real "center" point. However, if we position ourselves 
at the point e = (1, 1, ... , 1) T, at least we still keep equal distance from each facet, 
or "wall," of the nonnegative orthant. As long as the moving distance is less than one 
unit, any new point that moves from e remains in the interior of the nonnegative orthant. 
Consequently, if we were able to find an appropriate transformation that maps a cur­
rent interior solution to the point e, then, in parallel with Karmarkar' s projective scaling 
algorithm, we can state a modified strategy as follows. 

"Take an interior solution, apply the appropriate transformation to the solution space so as 
to place the current solution at e in the transformed space, and then move in the direction of 
steep descent in the null space of the transformed explicit constraints, but not all the way to 
the nonnegativity walls in order to remain as an interior solution. Then we take the inverse 
transformation to map the improved solution back to the original solution space as a new 
interior solution. Repeat this process until the optimality or other stopping conditions are 
met." 

An appropriate transformation in this case turns out to be the so-called affine 
scaling transformation. Hence people named this variant the affine scaling algorithm. 
Also, because it is directly applied to the primal problems in standard form, its full name 
becomes the primal affine scaling algorithm. 

Affine scaling transformation on the nonnegative orthant. 
be an interior point of the nonnegative orthant R~, i.e., xf > 0 for i = 
define an n x n diagonal matrix 

l

xk 

X, = diag (x!') = ~ 
0 
X~ 

0 n n 

Let xk ERn 

1, ... ,n. We 

(7.3) 

It is obvious that matrix Xk is nonsingular with an inverse matrix XJ: 1 
, which is also a 

diagonal matrix but with 1 j xt being its i th diagonal element for i = 1, ... , n. 
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The affine scaling transformation is defined from the nonnegative orthant R~ to 
itself by 

(7.4) 

Note that transformation (7.4) simply rescales the ith component of x by dividing a 
positive number xf. Geometrically, it maps a straight line to another straight line. 
Hence it was named the affine scaling transformation. Figure 7.1 illustrates the geometric 
picture of the transformation in two-dimensional space. Note that for the two-dimensional 
inequality constraints, such as the case depicted by Figure 7.1, the scaling variables 
include the slack variables, too. As a matter of fact, each edge of the polygon corresponds 
to a slack variable being set to zero. However, it is difficult to represent the whole picture 
in the same figure. 

Yt 

L-------~======~----~ L-------~--~----------Y2 

Figure 7.1 

The following properties of Tk can be easily verified: 

(Tl) n is a well-defined mapping from R~ to R~, if xk is an interior point of R~. 

(T2) Tk(xk) =e. 

(T3) Tk(x) is a vertex of R~ if x is a vertex. 

(T4) Tk(x) is on the boundary of R~ if xis on the boundary. 

(T5) Tk(x) is an interior point of R~ if x is in the interior. 

(T6) Tk is a one-to-one and onto mapping with an inverse transformation Tk-l such 
that 

for each y E R~. (7.5) 

Primal affine scaling algorithm. Suppose that an interior solution xk to the 
linear programming problem (7.1) is known. We can apply the affine scaling transfor-
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mation Tk to "center" its image at e. By the relationship x = Xky shown in (7.5), in the 
transformed solution space, we have a corresponding linear programming problem 

Minimize ( ck) T y 

subject to Aky = b, y 2:: 0 

where ck = Xkc and Ak = AXk. 

(7.1'a) 

(7.1'b) 

In Problem (7.1'), the image of xk, i.e., yk = Tk(xk), becomes e that keeps unit 
distance away from the walls of the nonnegative orthant. Just as we discussed in Chapter 
6, if we move along a direction d~ that lies in the null space of the matrix Ak = AXk for 
an appropriate step-length ak > 0 , then the new point yk+l = e + akd; remains interior 

feasible to problem (7.1'). Moreover, its inverse image xk+I = Tk- 1(yk+ 1) = Xkyk+I 
becomes a new interior solution to problem (7 .1 ). 

Since our objective is to minimize the value of the objective function, the strategy 
of adopting the steepest descent applies. In other words, we want to project the negative 
gradient -ck onto the null space of matrix Ak to create a good direction d~ with improved 
value of the objective function in the transformed space. In order to do so, we first define 
the null space projection matrix by 

Pk =I- A[ (AkA[)- 1Ak =I- XkAT (AX~AT)- 1 AXk 

Then, the moving direction d;, similar to (6.12), is given by 

d~ = Pk(-ck) =-[I- XkAT (AX~AT)- 1 AXk]Xkc 

(7.6) 

(7.7) 

Note that the projection matrix Pk is well defined as long as A has full row rank 
and xk > 0. It is also easy to verify that AXkdk = 0. Figure 7.2 illustrates this projection 
mapping. 

-ck 

yk 

'',,Constant objective 
',',, plane 

Figure 7.2 

Now we are in a position to translate, in the transformed solution space, the current 
interior solution yk = e along the direction of d; to a new interior solution yk+I > 0 with 
an improved objective value. In doing so, we have to choose an appropriate step-length 
ak > 0 such that 

(7.8) 
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Notice that if d~ :::: 0, then ak can be any positive number without leaving the 
interior region. On the other hand, if (d;)i < 0 for some i, then ak has to be smaller 
than 

Therefore we can choose 0 < a < 1 and apply the minimum ratio test 

ak = min {-;-- (d~)i < o} 
I -(dy)i 

(7.9) 

to determine an appropriate step-length that guarantees the positivity of yk+1. When a 
is close to 1, the current solution is moved "almost all the way" to the nearest positivity 
wall to form a new interior solution in the transformed space. This translation is also 
illustrated in Figure 7.2. 

Our next task is to map the new solution yk+1 back to the original solution space for 
obtaining an improved solution xk+ 1 to problem (7.1). This could be done by applying 
the inverse transformation Tk- 1 to yk+ 1. In other words, we have 

where 

xk+1 = Tk-1 (l+1) = Xkl+1 

= xk +akXkd~ 

= xk - akXkPkXkc 

= xk- akXk [1- XkAT (AX~ATr 1 
AXk] Xkc 

= xk- akX~ [c-AT (AX~ATr 1 AX~c] 

= xk - akX~ [ c - AT wk] (7.10) 

(7.11) 

This means the moving direction in the original solution space is d~ = -XUc­
AT wk] and the step-length is ak. while d~ = - Xk [ c - AT wk] in the transformed space. 

Several important observations can be made here: 

Observation 1. Note that d~ = -Pkck and d~ = Xkd~. Since Pk is a projection 
mapping, we see that 

CT xk+1 = CT Xk + akcTXkdk 
y 

= cT xk + ak(ckl dk y 

= CT xk -a (dk)T dk 
k. y y 

= CT Xk- ak ~~d~w (7.12) 
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This implies that xk+ 1 is indeed an improved solution if the moving direction d~ f. 0. 
Moreover, we have the following lemmas: 

Lemma 7 .1. If there exists an xk E P0 with d~ > 0, then the linear programming 
problem (7 .1) is unbounded. 

Proof Since d~ is in the null space of the constraint matrix AXk and d~ > 0, we 

know yk+ 1 = y + akd~ is feasible to problem (7.1'), for any ak > 0. Consequently, we 

can set ak to be positive infinity, then Equation (7.12) implies that the limit of c7 xk+ 1 

approaches minus infinity in this case, for xk+l = xk + akXkd~ E P. 

Lemma 7.2. If there exists an xk E P0 with d~ = 0, then every feasible solution 
of the linear programming problem (7 .1) is optimal. 

Proof Remember that Pk is a null space projection matrix. Ford~ = -PkXkc = 0, 
we know that Xkc is in the orthogonal complement of the null space of matrix AXk. 
Since the orthogonal complement in this case is the row space of matrix AXk, there 
exists a vector uk such that 

(AXk) 7 uk = Xkc or (uk)T AXk = c7 Xk 

Since Xk 1 exists, it follows that (uk)T A= c7 . Now, for any feasible solution X, 

c7 x = (uk)T Ax= (uk) 7 b 

Since (uk) 7 b does not depend on x, the value of c7 x remains constant over P. 

Lemma 7.3. If the linear programming problem (7.1) is bounded below and its 
objective function is not constant, then the sequence {c7 xk I k = 1, 2, ... } is well-defined 
and strictly decreasing. 

Proof This is a direct consequence of Lemmas 7.1, 7.2, and Equation (7.12). 

Observation 2. If xk is actually a vertex point, then expression (7.11) can be 
reduced to wk = (B7 )- 1c8 which was defined as "dual vector" in Chapter 4. Hence we 
call wk the dual estimates (corresponding to the primal solution xk) in the primal affine 
scaling algorithm. Moreover, in this case, the quantity 

(7.13) 

reduces to c- A 7 (B7 )- 1c8 , which is the so-called reduced cost vector in the simplex 
method. Hence we call 0 the reduced cost vector associated with xk in the affine scaling 
algorithm. 

Notice that when rk ::?:: 0, the dual estimate wk becomes a dual feasible solution 
and (xk) T 0 = e7 Xkrk becomes the duality gap of the feasible solution pair (xk, wk), 

i.e., 

(7 .14) 
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In case eTXk rk = 0 with rk ::=:: 0, then we have achieved primal feasibility at xk, dual 
feasibility at wk, and complementary slackness conditions. In other words, xk is primal 
optimal and wk dual optimal. 

Based on the above discussions, here we outline an iterative procedure for the 
primal affine scaling algorithm. 

Step 1 (initialization): Set k = 0 and find x0 > 0 such that Ax0 = b. (Details 
will be discussed later.) 

Step 2 (computation of dual estimates): Compute the vector of dual estimates 

wk = (AX~AT)- 1 AX~c 

where Xk is a diagonal matrix whose diagonal elements are the components of xk. 

Step 3 (computation of reduced costs): Calculate the reduced costs vector 

rk = c- ATwk 

Step 4 (check for optimality): If rk ::=:: 0 and eTXkrk .:::: E (a given small positive 
number), then STOP. xk is primal optimal and wk is dual optimal. Otherwise, go 
to the next step. 

Step 5 (obtain the direction of translation): Compute the direction 

d~ = -Xkrk 

Step 6 (check for unboundedness and constant objective value): If d~ > 0, 
then STOP. The problem is unbounded. If d~ = 0, then also STOP. xk is primal 
optimal. Otherwise go to Step 7. 

Step 7 (compute step-length): Compute the step-length 

ak =min{~ (d;); < o} 
I -(dy)i 

where 0 <a < 1 

Step 8 (move to a new solution): Perform the translation 

xk+ 1 = xk + akXkdk y 

Reset k +-- k + 1 and go to step 2. 

The following example illustrates the steps of primal affine scaling algorithm. 

Example 7.1 
Minimize - 2x 1 + x2 

subject to XJ - x2 + X3 = 15 

X2 + X4 = 15 
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In this case, 

A=[1 -1 1 OJ 
0 1 0 1 , b = [15 15f, and c = [ -2 1 0 0] T 

Let us start with, say, x0 = [10 2 7 13]T, which is an interior feasible solution. Hence, 

l
10 

Xo-
0 

- 0 

0 

~ ~ ~l 
0 7 0 
0 0 13 

- 0.00771f 

Moreover, 

r 0 =c-AT w0 = [ -0.66647 -0.32582 1.33535 - 0.00771f 

Since some components of r0 are negative and eTXor0 = 2.1187, we know that 
the current solution is nonoptimal. Therefore we proceed to synthesize the direction of 
translation with 

d~ = -X0r 0 = [6.6647 0.6516 -9.3475 0.1002f 

Suppose that a = 0.99 is chosen, then the step-length 

Therefore, the new solution is 

0.99 
ao = -- = 0.1059 

9.3475 

x 1 = x0 + aoXod~ = [17.06822 2.13822 0.07000 12.86178]T 

Notice that the objective function value has been improved from -18 to -31.99822. 
The reader may continue the iterations further and verify that the iterative process converges 
to the optimal solution x* = [30 15 0 O]T with optimal value -45. 

Convergence of the primal affine scaling algorithm. Our objective is to 
show that the sequence {xk} generated by the primal affine scaling algorithm (without 
stopping at Step 6) converges to an optimal solution of the linear programming problem 
(7.1). In order to simplify our proof, we make the following assumptions: 

1. The linear programming problem under consideration has a bounded feasible do­
main with nonempty interior. 

2. The linear programming problem is both primal nondegenerate and dual nonde­
generate. 

The first assumption rules out the possibility of terminating the primal affine scaling 
algorithm with unboundedness, and it can be further shown that (see Exercise 7.5) these 
two assumptions imply that (i) the matrix AXk is of full rank for every xk E P and (ii) 
the vector rk has at most m zeros for every wk E Rm. 

We start with some simple facts. 

Lemma 7.4. When the primal affine scaling algorithm applies, lim Xkrk = 0. 
k->00 
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Proof Since { cT xk} is monotonically decreasing and bounded below (by the first 
assumption), the sequence converges. Hence Equations (7.12) and (7.9) imply that 

0 = lim (cT xk - cT xk+l) = lim ak lldk 11 2 2: lim _a_lldk 11 2 

k-->oo k->oo Y k-+oo lldk II Y y 

Notice that a > 0 and lid~ II 2: 0, we have 

lim lid~ II= lim IIXkrkll = 0. 
k-->oo k-+oo 

The result stated follows immediately. 

The reader may recall that the above result is exactly the complementary slackness 
condition introduced in Chapter 4. Let us define C c P to be the set in which the 
complementary slackness holds. That is, 

C = {xk E P IXkr" =0} (7.15) 

Furthermore, we introduce D c P to be the set in which the dual feasibility 
condition holds, i.e., 

(7.16) 

In view of the optimality conditions of the linear programming problem, it is easy 
to prove the following result. 

Lemma 7.5. For any x E C n D, xis an optimal solution to the linear program­
ming problem (7.1). 

We are now ready to prove that the sequence {xk} generated by the primal affine 
scaling algorithm does converge to an optimal solution of problem (7 .1 ). First, we show 
that 

Theorem 7.1. If {xk} converges, then x* = lim xk is an optimal solution to 
k-+00 

problem (7.1). 

Proof We prove this result by contradiction. First notice that when {xk} converges 
to x*, x* must be primal feasible. However, let us assume that x* is not primal optimal. 

Since r" ( ·) is a continuous function of x at xk, we know r* = lim rk is well 
k->oo 

defined. Moreover, Lemma 7.4 implies that 

X*r* = lim Xkrk = 0 
k-+oo 

Hence we have x* E C. By our assumption and Lemma 7.5, we know that x* ~ D. 
Therefore, there exists at least one index j such that rl < 0. Remembering that x* E C, 
we have xj = 0. Owing to the continuity of r", there exists an integer K such that for 

any k ::: K, {rj} < 0. However, consider that 

k+l k ( k)2 k 
xj = xj - ak xj rj 



154 Affine Scaling Algorithms Chap. 7 

Since (xj) 2rj < 0, we have xJ+1 > xj > 0, V k ~ K, which contradicts the fact 

that xJ ___,. xj* = 0. Hence we know our assumption must be wrong and x* is primal 
optimal. 

The remaining work is to show that the sequence {xk} indeed converges. 

Theorem 7.2. The sequence {xk} generated by the primal affine scaling algorithm 
is convergent. 

Proof Since the feasible domain is nonempty, closed, and bounded, owing to 
compactness the sequence { xk} has at least one accumulation point in P, say x*. Our 
objective is to show that x* is also the only accumulation point of {xk} and hence it 
becomes the limit of {xk}. 

Noting that rk(·) is a continuous function of xk and applying Lemma 7.4, we can 
conclude that x* E C. Furthermore, the nondegeneracy assumption implies that every 
element in C including x* must be a basic feasible solution (vertex of P). Hence we 
can denote its nonbasic variables by x'N and define N as the index set of these nonbasic 
variables. In addition, for any 8 > 0, we define a "8-ball" around x* by 

B0 = { xk E P I xt < 8e} 

Let r* be the reduced cost vector corresponding to x*. The primal and dual non­
degeneracy assumption ensures us to find an E > 0 such that 

mip.lrjl > E 
jEN 

Remember that the nondegeneracy assumption forces every member of C to be a 
vertex of P and there are only a finite number of vertices in P, hence C has a finite 
number of elements and we can choose an appropriate 8 > 0 such that 

and 

Recalling that 

we have 

B2o n C = x* 

mip.lr}l > E, 
jEN 

(7.17) 

(7.18) 

Owing to the boundedness assumption, we know that the step-length ak at each 
iteration is a positive but bounded number. Therefore, for appropriately chosen E and 8, 
if xk E Bo, which is sufficiently close to x*, we see that ak[xjrjf <EO. Hence we can 
define a set 
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Now, for any xk E SE,8, (7.18) implies that 

ak [xJ]
2 

I rf I < 8, V j EN 

which further implies that 

k+ I k [ ( k' 2 k] xj = xj - ak xj) rj < 28, 

This means xk+ 1 E B28 if xk E SE ,8. 

Now we are ready to show that x* is the only accumulation point of {xk} by 
contradiction. We suppose that {xk} has more than one accumulation point. Since x* is 
an accumulation point, the sequence {xk} visits S€,8 infinitely often. But because x* is 
not the only accumulation point, the sequence has to leave S£,8 infinitely often. However, 
each time when the sequence leaves S£,8• it stays in B28 \S£,8. Therefore, infinitely many 
elements of {xk} fall in B28 \S£,8• Notice that this difference set has a compact closure, 
and the subsequence of {xk} belonging to B28 \S£,8 must have an accumulation point in 
the compact closure. Noting the definition of C, we know that every accumulation point 
of {xk} must belong to it. However, Cis disjoint from the closure of B28 \S£,8. This fact, 
together with Equation (7 .17), causes a contradiction. Thus x* is indeed the limit of the 
sequence { xk}. 

More results on the convergence of the affine scaling algorithm under degeneracy 
have appeared recently. Some references are included at the end of this chapter for 
further information. 

7.1.2 Implementing the Primal Affine Scaling Algorithm 

Many implementation issues need to be addressed. In this section, we focus on the start­
ing mechanisms, checking for optimality, and finding an optimal basic feasible solution. 

Starting the primal affine scaling algorithm. Parallel to our discussion for 
the revised simplex method, here we introduce two mechanisms, namely, the big-M 
method and two-phase method for finding an initial interior feasible solution. The first 
method is more easily implemented and suitable for most of the applications. However, 
more serious commercial implementations often consider the second method for stability. 

Big-M Method. In this method, we add one more artificial variable xa asso­
ciated with a large positive number M to the original linear program problem to make 
(1, 1, ... , 1) E Rn+l become an initial interior feasible solution to the following problem: 

Minimize CT X + M X a 

subject to [A I b- Ae] [xxa J = b, 

where e = (1, 1, ... , l)T ERn. 

(7.19a) 

(7.19b) 
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Comparing to the big-M method for the revised simplex method, here we have 
only n + 1 variables, instead of n + m. When the primal affine scaling algorithm is 
applied to the big-M problem (7.19) with sufficiently large M, since the problem is 
feasible, we either arrive at an optimal solution to the big-M problem or conclude that 
the problem is unbounded. Similar to the discussions in Chapter 4, if the artificial 
variable remains positive in the final solution (x*, xa*) of the big-M problem, then the 
original linear programming problem is infeasible. Otherwise, either the original prob­
lem is identified to be unbounded below, or x* solves the original linear programming 
problem. 

Two-Phase Method. Let us choose an arbitrary x0 > 0 and calculate v = b-Ax0 . 

If v = 0, then x0 is an initial interior feasible solution. Otherwise, we consider the 
following Phase-I linear programming problem with n + 1 variables: 

Minimize u 

subject to [A I v] [~] = b, 

It is easy to verify that the vector 

X 2: 0, U 2: 0 

(7.20a) 

(7.20b) 

is an interior feasible solution to the Phase-I problem. Hence the primal affine scaling 
algorithm can be applied to solve this problem. Moreover, since the Phase-! problem is 
bounded below by 0, the primal affine scaling algorithm will always terminate with an 
optimal solution, say (x*, u*)T. Again, similar to the discussions in Chapter 4, if u* > 0, 
then the original linear programming problem is infeasible. Otherwise, since the Phase-! 
problem treats the problem in a higher-dimensional space, we can show that, except for 
very rare cases with measure zero, x* > 0 will become an initial interior feasible solution 
to the original problem. 

Note that the difference in dimensionality between the original and Phase-I prob­
lems could cause extra computations for a simpleminded implementation. First of all, 
owing to numerical imprecisions in computers, the optimal solution x* obtained from 
Phase-I could become infeasible to the original problem. In other words, we need to 
restore primal feasibility before the second-phase computation. Second, the difference of 
dimensionality in the fundamental matrices AX~ AT (of the original problem) and AX~ AT 
(of the Phase-I problem) could prevent us from using the same "symbolic factorization 
template" (to be discussed in Chapter 10) for fast computation of their inverse matrices. 
Therefore, it would be helpful if we could operate the Phase-I iterations in the original 
n -dimensional space. 

In order to do so, let us assume we are at the kth iteration of applying the primal 
affine scaling to the Phase-I problem. We denote 
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to be the current solution, 

A= [A I v], 

Remember that the gradient of the objective function is given by 

hence the moving direction in the original space of Phase-! problem is given by 

a~ = -Xk[I- A.[ c.Ak.A[)-1 Ak]ck (7.21) 

where ck = Xkc. If we further define 
k A A !A k 

w = (AkAk)- Akc (7.22) 

then we have 

(7.23) 

Simple calculation results in 

AkA[= [AX~AT + (uk)2vvT] (7.24) 

and 

Akck =[A I v] [~k ~k] [u~] = [AXk 1 vuk] [:k] = (uk)
2
v (7.25) 

Combining (7.22), (7.24), and (7.25), we see that 

(7.26) 

Applying the Sherman-Woodbury-Morrison lemma (Lemma 4.2), we have 

wk = l (AX2AT)- 1v = l (AX2AT)-1v (7 27) 
[(uk)-2 + yT (AX~AT)-lv] k [(uk)-2 + y] k · 

where y = vT (AX~AT)- 1 v. Plugging corresponding terms into (7.23), we see that 

a~= -:Xkce- A.[ wk) 

(7.28) 

Observing that 

(uk)2 ( 1 _ vT wk) = (uk)2 ( 1 _ Y ) = 1 
(uk)-2 + y (uk)-2 + y 
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we further have 

(Jk= 1 [X~AT(AX~A~~- 1 (b-Axo)] 
x (uk)-2 + y 

(7.29) 

Notice that the scalar multiplier in (7.29) will be absorbed into the step-length and 
the last element of the moving direction is -1. Hence we know that the algorithm tries 
to reduce u all the time. In this expression, we clearly see the computation of d~ can be 
performed in the original n-dimensional space and the template for the factorization of 
AX~ AT can be used for both Phase I and II. 

In order to compute the step-length, we consider that 

Similar to the previous discussion, the step-length can be chosen as 

for some 0 < a < 1 

An interesting and important point to be observed here is that the Phase-I iterations 
may be initiated at any time (even during the Phase-II iterations). Once we detect that 
the feasibility of a current iterate is lost owing to numerical inaccuracies that stem from 
the finite word length of computers, Phase-I iterations can be applied to restore the 
feasibility. Hence sometimes we call it a "dynamic infeasibility correction" procedure. 
Sophisticated implementations should have this feature built in, since the primal method 
is quite sensitive to numerical truncations and round-off errors. 

Having determined the starting mechanisms, we focus on the stopping rules for the 
implementation of the primal affine scaling algorithm. 

Stopping rules. As we mentioned earlier, once the K-K-T conditions are met, 
an optimal solution pair is found. Hence we use the conditions of (1) primal feasibility, 
(2) dual feasibility, and (3) complementary slackness as the stopping rules. However, in 
real implementations these conditions are somewhat relaxed to accommodate the numer­
ical difficulties due to limitations of machine accuracy. 

Let xk be a current solution obtained by applying the primal affine scaling algorithm. 
The primal feasibility condition requires that 

(I) PRIMAL FEASIBILITY 

In practice, the primal feasibility is often measured by 

IIAxk- bll 
llbll + 1 

with xk :::: 0 

(7.30) 

(7.31) 
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Note that for xk :::: 0, if CJp is small enough, we may accept xk to be primal feasible. 
The addition of 1 in the denominator of (7.31) is to ensure numerical stability in 
computation. 

(II) DUAL FEASIBILITY 

The dual feasibility requires the nonnegativity of reduced costs, i.e., 

rk =c-ATwk:::: 0 (7.32) 

where wk is the dual estimate defined in Equation (7.11). A practical measure of 
dual feasibility could be defined as 

II~ II 
CJd= llcll+l (7.33) 

where I Irk II and I lei I are calculated only for those i such that rf < 0. When CJd is 
sufficiently small, we may claim the dual feasibility is satisfied by wk. 

(Ill) COMPLEMENTARY SLACKNESS 

The complementary slackness condition requires that 

(xkl rk = eXkrk = 0 

Since 

CT Xk - bT Wk = eTXkrk 

where xk is primal feasible and wk is dual feasible, we may define 

CJc = cT xk - bT wk 

to measure the complementary slackness condition. 

(7.34) 

(7.35) 

(7.36) 

In practice, we choose CJp, CJd and CJc as sufficiently small positive numbers and 
use them to decide if the current iteration meets the stopping rules. According to the 
authors' experience, we have observed the following behavior for the primal affine scaling 
algorithm: 

1. At each iteration, the computational bottleneck is due to the computation of the 
dual estimates wk. 

2. Although the primal feasibility condition is theoretically maintained, the numerical 
truncation and round-off errors of computers could still cause infeasibility. There­
fore, the primal feasibility needs to be carefully checked. Once the infeasibility is 
detected, we may apply the Phase-I "dynamic infeasibility correction" procedure 
to restore the primal feasibility. 

3. The value of the objective function decreases dramatically in the early iterations, but 
the decreasing trend slows down considerably when the current solution becomes 
closer to optimality. 
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4. The algorithm is somewhat sensitive to primal degeneracy, especially when the 
iteration proceeds near optimality. But this is not universally true. In many cases, 
even with the presence of primal degeneracy, the algorithm still performs quite 
well. 

Finding a basic feasible solution. Notice that, just like Karmarkar' s algo­
rithm, at each iteration, the current solution of the primal affine scaling algorithm always 
stays in the interior of the feasible domain P. In order to obtain a basic feasible solution, 
the purification scheme and related techniques described in Chapter 6 can be applied here. 

7.1.3 Computational Complexity 

Compared to Karmarkar' s projective transformation, the affine scaling transformation is 
less complicated and more natural. The implementation of the primal affine scaling is 
also simple enough. It does not need the assumption of "zero optimal objective value" 
nor require the special "simplex structure." By far, it is one of the most "popular" 
variants of the interior-point method. According to R. Vanderbei, M. Meketon, and B. 
Freedman's experiment, for problems with dense constraint matrices, their primal affine 
scaling implementation takes about 7.3885m-0·0187n°· 1694 iterations to reach an optimal 
solution within E = 10-3 . The result was derived from the regression analysis of 137 
randomly generated problems. 

Although in practice the primal affine scaling algorithm performs very well, no 
proof shows the algorithm is a polynomial-time algorithm. Actually, N. Megiddo and 
M. Shub showed that the affine scaling algorithm might visit the neighborhoods of all 
the vertices of the Klee-Minty cube when a starting point is pushed to the boundary. 

Potential push method. To avoid being trapped by the boundary behavior, a 
recentering method called potential push is introduced. The idea is to push a current 
solution xk to a new interior solution f._k which is away from the positivity walls but 
without increasing its objective value. Then continue the iterations from X.k. Figure 7.3 
illustrates this concept. 

In Figure 7.3, we move from xk-I to a new solution xk along the direction d~-J 
provided by the primal affine scaling algorithm. Then we recenter xk to X.k by a "potential 
push" along the direction d.~ such that xk and X.k have the same objective value but X.k is 
away from the boundary. 

To achieve this goal, first we define a potential function p(x), for each x > 0, as 

n 

p(x) = - L loge Xj 

j=! 

(7.37) 

The value of the potential function p(x) becomes larger when x is closer to a positivity 
wall Xj = 0. Hence it creates a force to "push" x away from too close an approach to 
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Figure 7.3 

a boundary by minimizing p(x). With the potential function, we focus on solving the 
following "potential push" problem: 

Minimize p(x) 

subject to Ax = b, X>O 

(7.38a) 

(7.38b) 

(7.38c) 

Note that (7 .38b) requires the solution of problem (7 .38) to be an interior feasible solution 
to the original linear programming problem; (7.38c) requires it to keep the same objective 
value as xk; and minimizing p(x) forces the solution away from the positivity walls. 
Therefore, we can take the optimal solution of problem (7 .38) as X.k. 

Similar to our discussions for the Phase-I problem, if we directly apply the primal 
affine scaling algorithm to solve the potential push problem, we have a mismatch in 
dimensionality, since problem (7.38) has one more constraint than the original linear 
programming problem. In order to implement the potential push method in a consistent 
framework with the primal affine scaling algorithm, we need to take care of requirement 
(7.38c) separately. Also notice that we do not really need to find an optimal solution 
to the potential push problem. Any feasible solution to problem (7.38) with improved 
value in p(x) can be adopted as X.k. 

One way to achieve this goal is to take xk as an initial solution to problem (7 .38), 
then project the negative gradient of p(x) onto the null space of the constraint matrix A 
as a potential moving direction, say pk. But in order to keep the same objective value, 
we first project the negative gradient of the objective function c7 x onto the null space 
of A and denote it as g. Then, the recentering (or push) direction d~ is taken to be the 
component of pk which is orthogonal to g. Finally, along this direction, we conduct a 
line search for an optimal step-length. 
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Mathematically speaking, we let P =I- AT (AAT)-1 A be the projection mapping 
and V p(x) be the gradient of the potential function. Then, we have 

pk = - P ( V p ( xk)) = [I - AT ( AA T r 1 
A] ( :k ) (7.39) 

where 

~= (~, ... ,~)T 
X x 1 Xn 

Similarly, 

(7.40) 

We now decompose pk into two components, one along g and the other orthogonal 
to it. The first component can be expressed as JJ,g, for some M > 0, since it is along the 
direction of g. Therefore the orthogonal component can be expressed as 

d~ = pk- JJ,g (7.41) 

Moreover, the orthogonal condition requires that 

(d~)T g = 0 

which determines the value of M by 

and, consequently, 

d~k - k [ (pk)T g] -P- -- g 
x gTg 

Figure 7.4 illustrates this situation. 

g 

----------------- ,Pk 

j1.g 

Figure 7.4 

(7.42) 

(7.43) 

(7.44) 
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Now we focus on finding an appropriate step-length K such that the point xk is 
translated to a new solution xk = xk + Kd~ which has the same objective value as cT xk 
but with a lower value in p(x). To do so, we conduct a line search along the direction 
d~. One of the easiest ways is via binary search. Note that the maximum value (say /Z) 
that K can assume is given by 

(7.45) 

Hence we only have to search for K in the interval (0, IZ) such that p(xk) assumes a 
minimum value. 

Several issues are worth mentioning here: 

1. When the potential push method is applied after each iteration of the primal affine 
scaling algorithm, since P needs to be evaluated only once for all iterations and 
a binary search is relatively inexpensive, the evaluation of the potential function 
required during the search becomes the most time-consuming operation associated 
with the potential push. 

2. The purpose of applying potential push is to gain faster convergence by staying 
away from the boundary. If the extra speed of convergence obtained by potential 
push appears to be marginal, then it is not worth spending any major effort in it. 
Some coarse adjustments are good enough in this case. According to the authors' 
experience, no more than four or five searches per affine scaling iteration are needed 
to estimate xk. 

3. Recall that Karmarkar' s potential function is given by (6.18), namely, 

n 

f(x; c)= n loge (cT x)- L loge Xj 
j=l 

Hence j(x; c) = n loge (cT x)- p(x), assuming that cT x > 0. When the potential 
push is applied after each iteration of the primal affine scaling, we see the first 
term in j(x; c) is reduced by the affine scaling and the second term is reduced by 
the potential push. Thus the flavor of Karmarkar' s approach is preserved. 

4. Since the flavor of Karmarkar's potential function is preserved, it is conjectured that 
primal affine scaling together with potential push could result in a polynomial-time 
algorithm. But so far, no rigorous complexity proof has been provided. 

Logarithmic barrier function method. Another way to stay away from the 
positivity walls is to incorporate a barrier function, with extremely high values along the 
boundaries {x E Rn I Xj = 0, for some 1 ::=: j ::=: n}, into the original objective function. 
Minimizing this new objective function will automatically push a solution away from 
the positivity walls. The logarithmic barrier method considers the following nonlinear 
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optimization problem: 
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n 

Minimize FIL(x) = cT x- p, I)ogexj 
j=! 

subject to Ax= b, X>O 

Chap. 7 

(7.46a) 

(7.46b) 

where p, > 0 is a scalar. If x*(p,) is an optimal solution to problem (7.46), and if x*(p,) 
tends to a point x* as f.L approaches zero, then it follows that x* is an optimal solution 
to the original linear programming problem. Also notice that the positivity constraint 
x > 0 is actually embedded in the definition of the logarithmic function. Hence, for any 
fixed p, > 0, the Newton search direction diL at a given feasible solution x is obtained 
by solving the following quadratic optimization problem: 

Minimize ~dT\72 FIL(x)d + ((V'FIL(x)l d 
2 

subject to Ad = 0 

where V'FIL(x) = c- p,X- 1e and V'2FIL(x) = p,X-2. 

(7.47a) 

(7.47b) 

In other words, the Newton direction is in the null space of matrix A and it 
minimizes the quadratic approximation of FIL(x). We let AIL denote the vector of Lagrange 
multipliers, then diL and AIL satisfy the following system of equations: 

It follows that 

and 

1 
diL = --X[I- XAT (AX2 Ar)- 1 AX](Xc- p,e) 

p, 

(7 .48) 

(7.49a) 

Taking the given solution to be x = xk and comparing diL with the primal affine 
scaling moving direction d~, we see that 

diL = _!_d~ + Xk(l- XkAT (AXIAT)- 1AXk]e 
f.L 

(7.49b) 

The additional component Xk[I- XkAT(AX~AT)- 1 AXk]e = XkPke can be viewed as 
a force which pushes a solution away from the boundary. Hence some people call it 
a "centering force," and call the logarithmic barrier method a "primal affine scaling 
algorithm with centering force. " 
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While classical barrier function theory requires that xk solves problem (7.46) ex­
plicitly before IL = ILk is reduced, C. Gonzaga has pointed out that there exists ILo > 0, 
0 < p < 1, and a > 0 so that choosing dJLk by (7 .49), xk+l = xk +adJLk, and ILk+ I = p ILk 
yields convergence to an optimal solution x* to the original linear programming problem 
in O(.jii.L) iterations. This could result in a polynomial-time affine scaling algorithm 
with complexity O(n3 L). A simple and elegant proof is due to C. Roos and J.-Ph. Vial, 
similar to the one proposed by R. Monteiro and I. Adler for the primal-dual algorithm. 

7.2 DUAL AFFINE SCALING ALGORITHM 

Recall that the dual linear programming problem of problem (7 .1) is 

Maximize bT w 

subject to AT w + s = c, s ~ 0, w unrestricted 

(7.50a) 

(7.50b) 

Similar to the dual simplex method, the dual affine scaling algorithm starts with a dual 
feasible solution and takes steps towards optimality by progressively increasing the ob­
jective function while the dual feasibility is maintained in the process. 

Notice that problem (7.50) contains both unrestricted variables w E Rm and non­
negative variables s E Rn. In this case, (w; s) is defined to be an interior feasible solution 
if AT w + s = c and s > 0. Also note that for w-variables, there is no meaning of "cen­
tering" since they are unrestricted. But for s-variables, we can treat them as we treat the 
x-variables in the primal problem. 

7.2.1 Basic Ideas of Dual Affine Scaling 

The dual affine scaling algorithm also consists of three key parts, namely, starting with 
an interior dual feasible solution, moving to a better interior solution, and stopping with 
an optimal dual solution. We shall discuss the starting mechanisms and stopping rules 
in later sections. In this section we focus on the iterates. 

Given that at the kth iteration, we have an interior dual solution (wk; sk) such 
that AT wk + sk = c and sk > 0. Our objective is to find a good moving direction 
(d:; d~) together with an appropriate step-length f3k > 0 such that a new interior solution 
(wk+ 1; sk+1) is generated by 

which satisfies that 

and 

wk+1 = wk + f3kd~ 
sk+l = sk + f3kd~ 

AT ~+1 + sk+I = c 

sk+ 1 > 0 

(7.51a) 

(7.51b) 

(7.52a) 

(7.52b) 

(7.52c) 
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Plugging (7.51) into (7.52a) and remembering that AT wk +sk = c, we have a requirement 
for the moving direction, namely, 

AT d: + d~ = 0 (7.53a) 

In order to get better objective value, we plug (7.51a) into (7.52c), which results in 
another requirement for the moving direction: 

bT d: ::: 0 (7.53b) 

To take care of (7 .52b ), the affine scaling method is applied. The basic idea is to recenter 
sk at e = ( 1, 1, ... , 1) T E Rn in the transformed space such that the distance to each 
positivity wall is known. In this way, any movement within unit distance certainly 
preserves the positivity requirement. 

Similar to what we did in the primal affine scaling algorithm, we define an affine 
scaling matrix Sk = diag (sk) which is a diagonal matrix with st as its ith diagonal 
element. In this way, St; 1sk = e and every s-variable is transformed (or scaled) into a 
new variable u ::: 0 such that 

(7.54a) 

and 

(7.54b) 

Moreover, if d~ is a direction of co~t improvement in the transformed space, then its 
corresponding direction in the original space is given by 

d~ = Skd~. (7.54c) 

Now we can study the iterates of the dual affine scaling algorithm in the transformed 
(or scaled) space. In order to synthesize a good moving direction in the transformed 
space, requirement (7 .53a) implies that 

AT d: + d; = 0::::? AT d: + Skd~ = 0 

::::? s-lAT dk + dk = 0 ___.._s-lAT dk = -dk 
k w" -----T'k w u 

Multiplying both sides by ASt; 1 we get 

AS-2AT dk = -As- 1dk k . 1U k u 

Assuming that A is of full row rank, we obtain 

dk = -(AS-2AT)- 1AS- 1dk 
w k k u (7.55a) 

By defining Qk = (ASt;2AT)- 1AS;; 1
, (7.55a) is simplified as 

d: = -Qkd~ (7.55b) 

The above equation says that d~ is actually determined by d~ in the transformed 
space. If we can find an appropriate direction d~ such that (7.53b) is satisfied, then we 
can achieve our goal. To do so, we simply let 

d~ = -QJb (7.56a) 
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then we have 

bTd: = bTQkd: = bTQkQ[b = ilbTQkll2 2:0 

Combining (7.56a) and (7.55b), we see that 

d: = (ASk2AT)- 1b 

167 

(7.56b) 

Consequently, from (7.53a), we have the following moving direction in the original 
space: 

(7.56c) 

Once the moving direction (d:; d~) is known, the step-length f3k is dictated by the 
positivity requirement of sk+1 as in the primal affine scaling algorithm, namely, 

1. If d~ = 0, then the dual problem has a constant objective value in its feasible 
domain and (wk; sk) is dual optimal. 

2. If d~ 2: 0 (but =I= 0), then problem (7.50) is unbounded. 

3. Otherwise, 

where 0 <a< 1 

Note that, similar to the way we defined dual estimates in the primal affine scaling 
algorithm, if we define 

(7.57) 

then Axk = ASk2 AT d~ = b. Therefore, xk can be viewed as a "primal estimate" in 
the dual affine scaling algorithm. Once the primal estimate satisfies that xk 2: 0, then 
it becomes a primal feasible solution with a duality gap cT xk - bT wk. Moreover, if 
cT xk - bT wk = 0, then (wk; sk) must be dual optimal and xk primal optimal. This 
information can be used to define stopping rules for the dual affine scaling algorithm. 

7.2.2 Dual Affine Scaling Algorithm 

Based on the basic ideas discussed in the previous section, we outline a dual affine 
scaling algorithm here. 

Step 1 (initialization): Set k = 0 and find a starting solution (w0 ; s0) such that 
AT w0 + s0 = c and s0 > 0. (Details will be discussed later.) 

Step 2 (obtain directions of translation): Let Sk = diag (sk) and compute 

dk = (AS-2AT)-- 1b and dk =-AT dk 
w k s w 

Step 3 (check for unboundedness): If d~ = 0, then STOP. (wk; sk) is dual 
optimal. If d~ 2: 0, then also STOP. The dual problem (7.50) is unbounded. 
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Step 4 (computation of the primal estimate): Compute the primal estimate as: 

xk = -SJ;2d~ 

Step 5 (check for optimality): If xk :::: 0 and c7 xk - b7 wk ::::: E, where E is a 
preassigned small positive number, then STOP. (wk; sk) is dual optimal and xk is 
primal optimal. Otherwise, go to the next step. 

Step 6 (computation of step-length): Compute the step-length 

{ k I } . as; k 
f3k = mm --k- (dJ; < 0 

1 -(ds ); 
where 0 <a< 1 

Step 7 (move to a new solution): Update dual variables (w; s) by 

wk+J = wk + f3kd~ 
sk+I = sk + f3kd~ 

Set k ~ k + 1 and go to Step 2. 

Now we present an example to illustrate the dual affine scaling algorithm. 

Example 7.2 

Consider the dual problem of Example 7.1 and solve it by using the dual affine scaling 
algorithm. 

First note the dual problem is 

Maximize 15wl + 15w2 

It is easy to verify that w0 = [ -3 -3f and s0 = [1 1 3 3f constitute an 
initial interior feasible solution. Hence, 

and 

0 1 0 
So= 0 o 3 

[ 

1 0 0 

0 0 0 

Then 

do = (AS-2 AT)-lb = [ 23.53211] 
w 0 34.~~0 

[ 

-23.53211l 
do= -AT do = -11.14679 

s w -23.53211 
-34.67890 

x0 = -S02d~ = (23.53211 11.14679 2.61467 3.8532ll 
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Although x0 ~ 0, the duality gap is cT x0 - bT w0 = 54.08257, which is far bigger than 
zero. Hence the current solution is not optimal yet. 

To calculate the step-length, we choose a= 0.99. Consequently, 

0.99 xI 
fJo = 23.53211 = 0.04207 

Updating dual variables, we have 

WI= (-3 -3/ + 0.04207 X (23.53211 34.67890/ = (-2.01000 -1.54105/ and 

s1 = (1 I 3 3)T +0.04207 x (23.53211 -11.146789 -23.53211 -34.67890)T 

= (0.01000 0.53105 2.01000 1.54105)T 

So far, we have finished one iteration of the dual affine scaling algorithm. Iterating 
again, we obtain 

w2 = (-2.00962 -1.10149)T 

s2 = [0.009624 0.00531 2.00962 1.01494f 

x2 = [29.80444 14.80452 0.00001 0.19548f 

This time, x2 > 0 and the duality gap has drastically reduced to 

CT x2 - bT w2 = -44.80435- ( -45.36840) = 0.56404 

which is clearly closer to zero. The reader may carry out more iterations and verify that the 
optimal value is assumed at w* = (-2 -1) T and s* = (0 0 2 1) T with an optimal ob­
jective value of -45. The corresponding primal solution x* is located at (30 15 0 Ol. 

7.2.3 Implementing the Dual Affine Scaling Algorithm 

In this section we introduce two methods, the "big-M method" and "upper bound 
method," to find an initial dual feasible interior solution for the dual affine scaling al­
gorithm. Then we discuss the stopping rules and report some computational experience 
regarding dual affine scaling. 

Starting the dual affine scaling algorithm. The problem here is to find 
(w0 ; s0) such that AT w0 + s0 = c and s0 > 0. Note that, in a special case, if c > 0, then 
we can immediately choose w0 = 0 and s0 = c as an initial interior feasible solution 
for the dual affine scaling algorithm. Unfortunately, this special case does not happen 
every time, and we have to depend upon other methods to start the dual affine scaling 
algorithm. 

Big-M Method. One of the most widely used methods to start the dual affine 
scaling is the big-M method. In this method, we add one more artificial variable, say wa, 
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and a large positive number M. Then consider the following "big-M" linear programming 
problem: 

Maximize bT w + M wa 

subject to AT w + pwa + s = c (7.58) 

w, wa umestricted and s :::: 0 

where p E Rn is a column vector whose ith component, i = 1, ... , n, is defined by 

p; = { ~ if C; :'S 0 
if C; > 0 

Now, we define c = max I C; I' set e > 1, and choose w = 0, wa = -ec, and 
i 

s = c + ecp. It is clearly seen that (0; -ec; c + ecpl is feasible to the big-M problem 
(7 .58) with c + ecp > 0. Hence we have found an initial interior feasible solution to the 
big-M problem to start the dual affine scaling algorithm. 

Note that wa starts with -ec < 0 and is forced to increase in the iterative process, 
since M is a large positive number. At some point of time, we expect to see that 
wa becomes nonnegative unless the original problem (7.50) is infeasible. When wa 
approaches or even crosses zero at the kth iteration, we can take w = wk and§= sk+pwa 
to start the dual affine scaling algorithm for the original dual linear programming problem 
(7.50). If wa does not approach or cross zero, then it can be shown that the original 
problem (7 .50) is infeasible. Showing this is left for the reader as an exercise. 

Also note that both e and M are responsible for the quantity of M wa. Their values 
could be "tweaked" simultaneously for numerical stability and robustness. 

Upper Bound or Artificial Constraint Method. In this method, we assume that 
for a sufficiently large positive number M, one of the optimal solutions to the original 
primal linear programming problem (7.1) falls in the ball of S(O; M), and we consider a 
corresponding "upper-bounded" linear programming problem: 

Minimize cT x 

subject to Ax = b and 0 :=:: x :=:: u 

where u = [M M Mf E Rn. The additional upper-bound constraints are 
artificially added to create a dual problem with a trivial initial interior solution. Actually, 
the dual of the upper-bounded problem is given by 

Maximize bT w - uT v 

subject to AT w + s - v = c, s:::: 0, v:::: 0, and w umestricted 

Vector v is sometimes called the vector of surplus variables. Remembering the 
definition of C and e in the previous section, we see that w0 = 0, v0 = ece > 0, and 
s0 = c + ece > 0 form an interior feasible solution to the dual upper-bound problem. 
Subsequently, the dual affine scaling algorithm can be applied. 
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The success of this method depends upon the choice of M. It has to be sufficiently 
large to include at least one optimal solution to problem (7.50). If the original linear 
programming problem is unbounded, the choice of M becomes a real problem. 

Stopping rules for dual affine scaling. For the dual affine scaling algorithm, 
we still use the K-K-T conditions for optimality test. Note that the dual feasibility is 
maintained by the algorithm throughout the entire iterative procedure. Hence we only 
need to check the primal feasibility and complementary slackness. 

Combining (7 .56c) and (7 .57), we see that the primal estimate is given by 

(7.59) 

It is easy to see that the explicit constraints Ax = b are automatically satisfied for 
any xk which is defined according to formula (7.59). Therefore, if xk ::: 0, then it must 
be primal feasible. Also note that, if we convert problem (7.50) into a standard-form 
linear programming problem and apply the primal affine scaling to it, the associated dual 
estimates eventually result in formula (7 .59). 

Once we have reached dual feasibility at wk and primal feasibility at xk, then the 
complementary slackness is provided by ac = cT xk - bT wk. When ac is smaller than a 
given threshold, we can terminate the dual affine scaling algorithm. 

Experiences with dual affine scaling. In light of the fact that the dual affine 
scaling algorithm is equivalent to the primal affine scaling algorithm applied to the dual 
problem, similar properties of convergence of the dual affine scaling can be established 
as we did for the primal affine scaling algorithm. The computational effort in each 
iteration of the dual affine scaling is about the same as in the primal affine scaling. To 
be more specific, the computational bottleneck of the primal affine scaling is to invert the 
matrix AX~ AT, and the bottleneck of dual affine scaling is to invert the matrix AS:;;-2 AT. 
But these two matrices have exactly the same structure, although they use different 
scaling. Any numerical method, for example, Cholesky factorization, that improves the 
computational efficiency of one algorithm definitely improves the performance of the 
other one. 

Based on the authors' experience, we have observed the following characteristics 
of the dual affine scaling algorithm: 

1. For a variety of practical applications, we have noted a general tendency that 
the dual affine scaling algorithm converges faster than the primal affine scaling 
algorithm. However, the major drawback of the dual affine scaling algorithm is 
that it does not give good estimates of the primal variables. 

2. The problem of losing feasibility in the primal affine scaling algorithm is not a 
serious problem for dual affine scaling. Actually, since the dual feasibility is 
maintained by choosing appropriate d~ = -AT d~, one could approximate the 
inverse matrix of AS:;;-2 AT in computing d~ and still obtain a feasible direction 
d~. Hence the dual method is less sensitive to numerical truncation and round-off 
errors. 
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3. The dual affine scaling algorithm is still sensitive to dual degeneracy, but less 
sensitive to primal degeneracy. 

4. The dual affine scaling algorithm improves its dual objective function in a very 
fast fashion. However, attaining primal feasibility is quite slow. 

7.2.4 Improving Computational Complexity 

Like the primal affine scaling algorithm, there is no theoretic proof showing the dual 
affine scaling is a polynomial-time algorithm. The philosophy of "staying away from the 
boundary" to gain faster convergence also applies here. In this section, we introduce the 
power series method and logarithmic barrier function method to improve the performance 
of the dual affine scaling algorithm. 

Power series method. In applying the primal affine scaling algorithm, if we 
take the step-length ak to be infinitesimally small, then the locus of xk can be viewed as 
a continuous curve extending from the starting point x0 to the optimal solution x*. As a 
matter of fact, in the limit, we may pose the following equation: 

dx(a) xk+l - xk 
-- = lim = Xkdk =-X~ (c- ATwk) 

dct "'k--"0 Clk y 

as a first-order differential equation and attempt to find a solution function which describes 
the continuous curve. This smooth curve is called a continuous trajectory, and the moving 
direction d~ = Xkd~ at each iteration is simply the tangential direction (or first-order 
approximation) of this curve at an interior point of P. 

As we can see from Figure 7.5, the first-order approximation deviates from the 
continuous trajectory easily. A higher-order approximation may stay closer to the con­
tinuous trajectory that leads to an optimal solution. The basic idea of the power series 
method is to find higher-order approximations of the continuous trajectory in terms of 
truncated power series. 

Figure 7.5 
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The same idea applies to the dual affine scaling algorithm. As a matter of fact, 
a continuous version of the dual affine scaling algorithm may be obtained by setting 
f3k -+ 0 and solving Equation (7.51) as a system of ordinary differential equations. 
These equations will specify a vector field on the interior of the feasible domain. Our 
objective here is to generate higher-order approximations of the continuous trajectories 
by means of truncated power series. 

Combining (7.56b) and (7.56c), we first write a system of differential equations 
corresponding to (7.51) as follows: 

(7.60a) 

(7.60b) 

with the initial conditions 

w(O) = w0 and s(O) = s0 (7 .60c) 

where S({J) = diag (s({J)) with s({J) = s0 + f3ds > 0. 
In order to find the solution functions w({J) and s({J) which trace out a continuous 

trajectory, we may consider expanding them in power series at the current solution 
w(O) = w0 and s(O) = s0 such that 

and 

s({J) =so+ f{Jj (~) [djs(~)] = f{Jj (~) [djs(~)] 
j=l 1. d{J {3=0 j=O 1. d{J {3=0 

If we denote 

f<i> = (~) [di f(~)] 
l. df3 {3=0 

for a function f(fJ), then (7.61) becomes 

and 

00 

w({J) = L {Jjw<j> 

j=O 

00 

s({J) = L {Jj s<j> 

j=O 

(7.6la) 

(7.6lb) 

(7.62a) 

(7.62b) 

Equation (7.62) can be truncated at any desirable order to get an approximation 
of the continuous trajectory. Of course, higher-order truncation depicts the continuous 
trajectory more closely but at higher computational expense. In general, to obtain a kth 
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(k ::: 1) order approximation of w(f3) and s(f3), we need to compute w<j> and s<j> for 
j = 1, ... , k. But Equation (7.60b) implies that 

s<j> = -AT w<j>, for j = 1, 2, ... (7.63) 

Hence the key is to compute w<j> for j ::: 1. 
We start with Equation (7.60a) and denote M(f3) = AS(f3)-2AT. Then we have 

(7.64) 

where M<0> = M(O) = AS(0)-2AT, in which S(0)-2 is the diagonal matrix with l/(s?)2 

being its ith diagonal element, and 

M(f3) dw(f3) = b 
df3 

Taking kth derivative on both sides, we have 

(7.65a) 

k ( k! ) [d(k-j)M(f3)] [dU+Ilw(f3)] = 0 
~ j!(k-j)! d[3(k-j) df3U+Il 

(7.65b) 

In other words, we have 

which further implies that 

k 

:I:<J + 1)M<k-j>w<HI> = 0 
j=O 

(7.65c) 

for k ::: 1 (7 .66) 

Hence our focus is shifted to find M<k-j+l>w<j> for j = 1, 2, ... , k and compute 
w<k+l> in a recursive fashion. 

Remembering that M(f3) = AS(f3)-2AT, we let Y(f3) = S(f3)-2 be a diagonal 
matrix with 1/(si(f3))2 as its ith diagonal element. Then, we have 

(7.67) 

and 

for k ::: 1 (7.68) 

In order to compute y<j>, we further define Z(f3) = S(f3)2 to be a diagonal matrix 
with (si ({3)) 2 as its ith diagonal element. In this way, we see that 

Z(f3)Y(f3) =I. 
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Taking kth derivative results in 

k L z<k-j>y<i> = o, 
j=O 

Consequently, 
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Vk?:.l 

Vk?:.l, (7.69) 

where y<O> = Y(O), which is a diagonal matrix with 1/Cs?f being its ith diagonal 
element, and z<O> = Z(O), which is a diagonal matrix with (sf)2 being its ith diagonal 
element. 

Now, if we know z<k-i>, then y<k> can be obtained by Equation (7.69). But this 
is an easy job, since Z(f3) = S(f3)2

. Taking kth derivative on both sides, we have 

k 

z<k> = L s<k-j>s<j> (7.70) 
j=O 

where S<j> for each j is a diagonal matrix which takes the ith component of s<j>, 

i.e., S;<j>' as its ith diagonal element. In particular, S<0> = S(O), which is the diagonal 
matrix with s? as its ith diagonal element. 

Summarizing what we have derived so far, we can start with the initial conditions 

Proceed with 

w<l> = [M(O)r 1b = [AS02Arr1b, 

and 

Remembering that z<O> = Z(O) = diag ((s0f) and y<O> = Y(O) = [Z(0)]- 1, from 
Equation (7.70), we can derive z<I>. Then, y<I> can be derived from Equation (7.69). 

Now, recursively, we can compute w<2> by Equation (7.68); compute s<2> by 

(7 .71) 

fork = 2; compute Z<2> by Equation (7.70); and compute y<2> by Equation (7.69). 
Proceeding with this recursive procedure, we can approximate w(f3) and s(f3) by a power 
series up to the desirable order. 

Notice that the first-order power series approximation results in the same mov­
ing direction as the dual affine scaling algorithm at a current solution. In order to get 
higher-order approximation, additional matrix multiplications and additions are needed. 
However, there is only one matrix inversion AS02 AT involved, which is needed anyway 
by the first-order approximation. Since matrix inversion dominates the computational 
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complexity of matrix multiplication and addition, it might be cost-effective to incorpo­
rate higher-order approximation. According to the authors' experience, we found the 
following characteristics of power series method: 

1. Higher-order power series approximation becomes more insensitive to degeneracy. 

2. Compared to the dual affine scaling algorithm, a power series approximation of 
order four or five seems to be able to cut the total number of iterations by half. 

3. The power series method is more suitable for dense problems. 

As far as the computational complexity is concerned, although it is conjectured that 
the power series method might result in a polynomial-time algorithm, no formal proof 
has yet been given. 

Logarithmic barrier function method. Similar to that of the primal affine 
scaling algorithm, we can incorporate a barrier function, with extremely high values 
along the boundaries { (w; s) I Sj = 0, for some 1 :::=: j :::=: n }, into the original objective 
function. Now, consider the following nonlinear programming problem: 

n 

Maximize FJL(w, J.L) = bT w + J.L 2:)oge(cj- AJ w) 
j=i 

subject to AT w < c 

(7.72a) 

(7.72b) 

where f.L > 0 is a scalar and AJ is the transpose of the jth column vector of matrix 
A. Note that if w*(J.L) is an optimal solution to problem (7.72), and if w*(J.L) tends to 
a point w* as f.L approaches zero, then it follows that w* is an optimal solution to the 
original dual linear programming problem. 

The Lagrangian of problem (7.72) becomes 

n 

L(w, A.)= bT w + J.L 2.:: loge(cj - AJ w) +A. T (c-AT w) 
j=i 

where A. is a vector of Lagrangian multipliers. Since Cj - AJ w > 0, the complementary 
slackness condition requires that A.= 0, and the associated K-K-T conditions become 

b- J.LAS- 1e = 0, and s > 0 

Assuming that wk and sk = c - AT wk > 0 form a current interior dual feasible solution, 
we take one Newton step of the K-K-T conditions. This results in a moving direction 

1 
b.w = -(ASJ;2AT)- 1b- (ASJ;2AT)- 1ASJ; 1e 

J.L 
(7.73) 

Compare to d~ in (7.56b), we see that -(ASJ;2AT)- 1ASJ;1e is an additional term in 
the logarithmic barrier method to push a solution away from the boundary. Therefore, 
sometimes the logarithmic barrier function method is called dual affine scaling with 
centering force. 
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By appropriately choosing the barrier parameter J.L and step-length at each iteration, 
C. Roos and J.-Ph. Vial provided a very simple and elegant polynomiality proof of the 
dual affine scaling with logarithmic barrier function. Their algorithm terminates in at 
most O(,jfi) iterations. Earlier, J. Renegar had derived a polynomial-time dual algo­
rithm based upon the methods of centers and Newton's method for linear programming 
problems. 

Instead of using (7.72), J. Renegar considers the following function: 

n 

f(w, /3) = t loge(bT W- /3) + L loge(Cj- AJ w) (7.74) 
j=l 

where f3 is an underestimate for the minimum value of the dual objective function (like the 
idea used by Todd and Burrell) and t is allowed to be a free variable. A straightforward 
calculation of one Newton step at a current solution (wk; sk) results in a moving direction 

(7.75) 

where 

bT (AS.k2AT)-1 AS.k1e + bT wk- f3 

y = (bTwk- {3)2/t + bT(AS.k2AT)- 1b 

By carefully choosing values oft and a sequence of better estimations {f3k}, J. Renegar 
showed that his dual method converges in O(,jfiL) iterations and results in a polynomial­
time algorithm of a total complexity 0 (n 3·5 L) arithmetic operations. Subsequently, P.M. 
Vaidya improved the complexity to O(n3 L) arithmetic operations. The relationship 
between Renegar's method and the logarithmic barrier function method can be clearly 
seen by comparing (7.73) and (7.75). 

7.3 THE PRIMAL-DUAL ALGORITHM 

As in the simplex approach, in addition to primal affine scaling and dual affine scaling, 
there is a primal-dual algorithm. The primal-dual interior-point algorithm is based on 
the logarithmic barrier function approach. The idea of using the logarithmic barrier 
function method for convex programming problems can be traced back to K. R. Frisch 
in 1955. After Karmarkar's algorithm was introduced in 1984, the logarithmic barrier 
function method was reconsidered for solving linear programming problems. P. E. Gill, 
W. Murray, M.A. Saunders, J. A. Tomlin, and M. H. Wright used this method to develop 
a projected Newton barrier method and showed an equivalence to Karmarkar's projective 
scaling algorithm in 1985. N. Megiddo provided a theoretical analysis for the logarithmic 
barrier method and proposed a primal-dual framework in 1986. Using this framework, M. 
Kojima, S. Mizuno, and A. Yoshise presented a polynomial-time primal-dual algorithm 
for linear programming problems in 1987. Their algorithm was shown to converge in at 
most O(nL) iterations with a requirement of O(n3) arithmetic operations per iteration. 
Hence the total complexity is 0 (n4 L) arithmetic operations. Later, R. C. Monteiro and 
I. Adler refined the primal-dual algorithm to converge in at most 0 ( ,jfiL) iterations 
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with O(n2·5) arithmetic operations required per iteration, resulting in a total of O(n3 L) 
arithmetic operations. 

7.3.1 Basic Ideas of the Primal-Dual Algorithm 

Consider a standard-form linear program: 

Minimize cT x 

subject to Ax= b, 

and its dual: 

Maximize bT w 

subject to AT w + s = c, s :::: 0, w unrestricted 

We impose the following assumptions for the primal-dual algorithm: 

(Al) The setS = {x E Rn I Ax= b, x > 0} is nonempty. 

(A2) The set T = {(w; s) E Rm x Rn I ATw + s = c, s > 0} is nonempty. 

(A3) The constraint matrix A has full row rank. 

(P) 

(D) 

Under these assumptions, it is clearly seen from the duality theorem that problems 
(P) and (D) have optimal solutions with a common value. Moreover, the sets of the 
optimal solutions of (P) and (D) are bounded. 

Note that, for x > 0 in (P), we may apply the logarithmic barrier function technique, 
and consider the following family of nonlinear programming problems (P p.): 

n 

Minimize cT x - fJ., L loge Xj 

j=! 

subject to Ax= b, x>O 

where p., > 0 is a barrier or penalty parameter. 
As p., --+ 0, we would expect the optimal solutions of problem (P p.) to converge to 

an optimal solution of the original linear programming problem (P). In order to prove 
it, first observe that the objective function of problem (P IL) is a strictly convex function, 
hence we know (P p.) has at most one global minimum. The convex programming theory 
further implies that the global minimum, if it exists, is completely characterized by the 
Kuhn-Tucker conditions: 

Ax=b, 

ATw+s = c, 

XSe- p.,e = 0 

X>O 

S>O 

(primal feasibility) 

(dual feasibility) 

(complementary slackness) 

(7.76a) 

(7.76b) 

(7.76c) 

where X and S are diagonal matrices using the components of vectors x and s as diagonal 
elements, respectively. 
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Under assumptions (AI) and (A2) and assuming that (P) has a bounded feasible 
region, we see problem (P p.) is indeed feasible and assumes a unique minimum at x(JL), 
for each JL > 0. Consequently, the system (7.76) has a unique solution (x; w; s) E 

Rn x Rm x Rn. Hence we have the following lemma: 

Lemma 7.5. Under the assumptions (Al) and (A2), both problem (Pp.) and sys­
tem (7.76) have a unique solution. 

Observe that system (7.76) also provides the necessary and sufficient conditions 
(the K-K-T conditions) for (w(JL); S(JL)) being a maximum solution of the following 
program (Dp.): 

n 

Maximize bT w + JL L loge Sj 

j=1 

subject to AT w + s = c, s > 0, w unrestricted 

Note that Equation (7.76c) can be written componentwise as 

for j = 1, ... , n (7.76c') 

Therefore, when the assumption (A3) is imposed, x uniquely determines w from Equa­
tions (7.76c') and (7.76b). We let (X(JL); w(JL); S(JL)) denote the unique solution to system 
(7.76) for each fL > 0. Obviously, we see X(JL) E Sand (w(JL); s(JL)) E T. Moreover, 
the duality gap becomes 

g(JL) = CT X(JL) - bT W(JL) 

= (cT - w(JL)T A)x(JL) 

= S(JL)T X(JL) = nJL (7.77) 

Therefore, as JL ~ 0, the duality gap g(JL) converges to zero. This implies that x(JL) and 
w(JL) indeed converge to the optimal solutions of problems (P) and (D), respectively. 
Hence we have the following result: 

Lemma 7.6. Under the assumptions (Al)-(A3), as JL ~ 0, X(JL) converges to 
the optimal solution of program (P) and (w(JL); s(JL)) converges to the optimal solution 
of program (D). 

For JL > 0, we let r denote the curve, or path, consisting of the solutions of system 
(7.76), i.e., 

r = {(x(JL); W(JL); s(JL)) 1 (x(JL); w(JL); s(JL)) solves (7.76) for some fL > 0} (7.78) 

As JL ~ 0, the path r leads to a pair of primal optimal solution x* and dual optimal 
solution (w*; s*). Thus following the path r serves as a theoretical model for a class of 
primal-dual interior-point methods for linear programming. For this reason, people may 
classify the primal-dual approach as a path-following approach. 

Given an initial point (x0; w0; s0) E S x T, the primal-dual algorithm generates a 
sequence of points { (xk; wk; sk) E S x T} by appropriately choosing a moving direction 
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(d~; d~; d~) and step-length f3k at each iteration. To measure a "deviation" from the 
curve r at each (xk; wk; sk), we introduce the following notations, fork= 0, 1, 2, ... , 

fori=1,2, ... ,n 

¢~n = min{¢7; i = 1, 2, ... , n} 

ek _ ¢;ve 
- k 

¢min 

(7.79a) 

(7.79b) 

(7 .79c) 

(7.79d) 

Obviously, we see that ek ::: 1 and (xk; wk; sk) E r if and only if ek = 1. We shall 
see in later sections, when the deviation e0 at the initial point (x0; w0 ; s0) E S x T is 
large, the primal-dual algorithm reduces not only the duality gap but also the deviation. 
With suitably chosen parameters, the sequence of points { (xk; wk; sk) E S x T} generated 
by the primal-dual algorithm satisfy the inequalities 

c7 xk+l - b7 wk+1 = (1 - 2/(nek))(c7 xk - b7 wk) 

ek+1 -2:::: (1- 1/(n + 1))(ek- 2), if 2 < ek 
(7.80a) 

(7.80b) 

(7.80c) 

The first inequality (7.80a) ensures that the duality gap decreases monotonically. 
With the remaining two inequalities we see the deviation ek becomes smaller than 3 in 
at most 0 (n log e 0) iterations, and then the duality gap converges to 0 linearly with the 
convergence rate at least (1 - 2/(3n)). 

7.3.2 Direction and Step-Length of Movement 

We are now in a position to develop the key steps of the primal-dual algorithm. Let 
us begin by synthesizing a direction of translation (moving direction) (d~; d~; d~) at a 
current point (xk; wk; sk) such that the translation is made along the curve r to a new 
point (xk+1; wk+l; sk+1 ). This task is taken care of by applying the famous Newton's 
method to the system of equations (7.76a)-(7.76c). 

Newton direction. Newton's method is one of the most commonly used tech­
niques for finding a root of a system of nonlinear equations via successively approximat­
ing the system by linear equations. To be more specific, suppose that F (z) is a nonlinear 
mapping from Rn toRn and we need to find a z* E Rn such that F(z*) = 0. By using the 
multivariable Taylor series expansion (say at z = zk), we obtain a linear approximation: 

F(zk + .6.z) ~ F(zk) + J(zk).6.z (7.81) 

where J(zk) is the Jacobian matrix whose (i, j)th element is given by 

[a ~i (z) J 
Z; z=zk 
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and t..z is a translation vector. As the left-hand side of (7.81) evaluates at a root of 
F (z) = 0, we have a linear system 

(7.82) 

A solution vector of equation (7.82) provides one Newton iterate from zk to zk+l = 
zk +d~ with a Newton direction d~ and a unit step-length. When J(z*) is nonsingular and 
the starting point z0 is "close enough" to z*, Newton's method converges quadratically 
to z*. But this spectacular convergence rate is only a "local" behavior. For a general 
nonlinear mapping F (z), if z0 is not close enough to z*, the Newton iteration may diverge 
hopelessly. 

Let us focus on the nonlinear system (7.76a-c). Assume that we are at a point 
(xk; wk; sk) for some f.Lk > 0, such that xk, sk > 0. The Newton direction (d~; d~; d~) 
is determined by the following system of linear equations: 

[l (7.83) 

where Xk and Sk are the diagonal matrices formed by xk and sk, respectively. Multiplying 
it out, we have 

where 

Notice that if xk E Sand (wk; sk) E T, then tk = 0 and uk = 0 correspondingly. 

(7.84a) 

(7.84b) 

(7.84c) 

(7.85) 

To solve system (7.83), we multiply both sides of Equation (7.84b) by AXkSk -t. 
Then, we have 

Now from Equation (7.84c), we have 

d; = X,i; 1vk- X,i; 1 Skd~. 

Following (7.85), we denote X,i; 1
vk = J.LkX_;; 1e- Ske as pk. 

the above equation would produce 

AXkS,i; 1d; = AXkS,i;1pk - tk 

Substituting Equation (7.88) back into Equation (7.86) yields 

(7.86) 

(7.87) 

Using Equation (7.84a) in 

(7.88) 

d~ = [AXkS,i;1ATrl (AXkS,i;1(uk- pk) + tk) (7.89a) 

where XkS,i;1 is a positive definite diagonal matrix. 
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Once d~ is obtained, d~ and d~ can be readily computed by 

dk = uk- AT dk 
s w 

dk = x s-I[pk- dkJ 
X k k S 

Chap. 7 

(7 .89b) 

(7.89c) 

Again, for (xk; wk; sk) E S x T, Equations (7.89a)-(7.89c) are simplified as 

d~ = -[AD~Arr 1 AS; 1 vk 

dk =-AT dk 
s w 

d~ = s;1 [vk- Xkd~] 

where D~ = XkSi: 1 and I\ = diag ( y'x.kjSf). 

(7.90a) 

(7.90b) 

(7.90c) 

It is important to note that d~, d~, and d~ in (7.90) are closely related. 
denote vector 

If we 

and matrix 
", ?' . ,, ~, . '1 l A 

Q = DkA' (ADj;A' )- ADk 

then (d~; d~; d~) can be rewritten as 

d~ = Dk(I- Q)rk(f.L) 

d~ = -(AD~AT)- 1 ADkrk(f.L) 

d~ = Di:1Qrk (t-L) 

(7.91a) 

(7.90a') 

(7.90b') 

(7.90c') 

Since matlix Q is the orthogonal projection matrix onto the column space of matrix 
DkAT, we see that 

(7.9lb) 

(7.91c) 

After obtaining a Newton direction at the kth iteration, the primal-dual algorithm 
iterates to a new point according to the following translation: 

xk+I = xk + ,Bkd~ 
wk+I = wk + ,Bkd~ 

sk+1 = l + ,Bkd~ 

with an appropriately chosen step-length ,Bk at the kth iteration such that xk+I E S and 
(wk+I; sk+I) E T. 
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Step-length and penalty parameter. When (xk; wk; sk) E S x T, the primal­
dual algorithm needs two parameters a and r, such that 0 ::::: r < a < 1, to control the 
penalty (or barrier) parameter pf and the step-length f3k at the kth iteration. 

For the penalty parameter, remembering the notations defined in (7.79), since we 
want to reduce the duality gap, n¢~ve' we may choose the penalty parameter to be a 
smaller number by setting 

(7.92) 

In this way, definition (7 .85) implies that vk ::::: 0. 
As to the step-length f3k, the choice is closely related to the complementary slack­

ness. Note that Equations (7.84c) and (7.85) imply that xfd~ + sfd;; = p,k- ¢f. Hence 
the complementary slackness varies quadratically in terms of the step-length f3, since 

(7.93a) 
i = 1,2, ... ,n 

Moreover, since (d~l d~ = 0, we see the average complementary slackness, and hence 
the duality gap, changes linearly in /3, i.e., 

(7.93b) 

Ignoring the quadratic term in (7.93a) and lowering the value p,k = a¢~ve by a 
factor r < a, we can define a linear function 

(7.94) 

The function ¢f (/3) can be either convex or concave depending upon the value of d;; d~. 
For the convex piece, since d;;d~ ~ 0, the curve of ¢f(f3) lies above the curve of 
1/fk (/3) for 0 ::::: f3 ::::: 1. However, a concave piece of ¢f (/3) may intersect 1/rk (/3) as 
shown in Figure 7.6. In order to control the deviation parameter (Jk while reducing the 
complementary slackness, we choose 

for all f3 E (0, fJ), 

0 < 7J < 1, and i = 1, ... , n } 

Then the step-length f3k at the kth iteration is defined by 

(7.95) 

(7.96) 

The geometrical significance of ak and f3k is depicted in Figure 7.6. It is clearly seen 
from the figure that the choice of f3k depends on the choice of 0 < r < 1 to ensure the 
existence of ak. 

Note that when (xk; wk; sk) E S x T, since (d~; d~; d~) is a solution to (7.84) 
with tk = 0 and uk = 0, we know that Axk+ 1 = b and AT w + s = c. Moreover, the 
definition of ak in (7.95) further implies that xk+ 1 > 0 and sk+1 > 0. In other words, 
(xk+ 1; wk+I; sk+ 1) E S x T. 



184 Affine Scaling Algorithms Chap. 7 

L---------------------~--~---~ 
0 ak Figure 7.6 

7.3.3 Primal-Dual Algorithm 

We now are ready to state the primal-dual algorithm as following: 

Step 1 (initialization): Set k = 0 and find a starting solution (x0 ; w0 ; s0) E S x T. 
Let E > 0 be a tolerance for duality gap and CY, r be control parameters such that 
O:sr<CY<l. 

Step 2 (checking for optimality): If c7 xk - b7 wk < E, then stop. Otherwise, 
continue. 

Step 3 (finding the direction of translation): Define <P~ve and ¢~in by (7.79). Let 
J-Lk = CY</J~ve and vk = J-Lke- XkSke. Computed~, d~, d~ according to (7.90). 
Step 4 (calculating step-length): Compute ak by (7.95) and f3k by (7.96). 

Step 5 (moving to a new solution): Let 

xk+l = xk + f3kd~ 
wk+! = wk + f3kd~ 

sk+1 = sk + {3kd~ 
Set k ~ k + 1 and go to Step 2. 

7.3.4 Polynomial-Time Termination 

Unlike the pure primal affine scaling and the pure dual affine scaling, the primal-dual al­
gorithm is a polynomial-time algorithm. The well-chosen step-length f3k at each iteration 
leads to the nice convergence results: 

Theorem 7.3. If the step-length f3k < 1 at the kth iteration, then 

k 4(CY-r) 4(CY-r) 
{3> >------::----:-

- n(l - 20' + ek0'2) - n(l + 0'2)ek 
(7.97a) 
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cT xk+l _ bT wk+l = (1 _ (1 _ u)f3k)(cT xk _ bT wk) 

ek+J- ujr::::: (1- v)(ek- ujr) if ujr < ek 

if ek ::::: ()" /r 

where 

4(u- r)r 
v = ------,-----

n(l + u 2) + 4(u- r)r 

On the other hand, if f3k = 1, then 

cT xk+I - bT wk+l = u(cT xk- bT wk) 

ek+I ::::: O"jT 

Proof Let us define 

where rk(J.Lk) is defined by (7.91a). What we want to prove first is that 

¢; (/3) :=:: r/ (/3) forf3E[0,1] and i=l, ... ,n 
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(7.97b) 

(7.97c) 

(7.97d) 

(7.98a) 

(7.98b) 

(7.99) 

(7.100) 

Note that the first two terms of Equation (7 .93a) are bounded below by the first 
two terms of Equation (7.99) for all f3 E [0, 1]. Hence we only have to evaluate the 
last quadratic term. By (7.91b) and (7.9lc), we know ~(J.Lk) is the orthogonal sum of 

A I k A k 
vectors D;; dx and Dkds. Therefore, 

Moreover, we see that 

Hence we conclude that (7.100) holds. 
Now consider the case of f3k < 1. We let y = max{/3 I r/C/3) :::: ljrk (/3) }, where 

ljrk(fJ) is defined by (7.94) with r = u. Since J.Lk = u¢~ve• with (7.96), we know 
f3k = ak :=:: y. Moreover, putting (7.94) and (7.99) together, by computing a positive 
solution of the equation 

(7.101) 

we get 

(7.102) 
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On the other hand, by (7.91), we have 

n 

jjrk(~Lk)jj2 = L)C¢7)1/2- O"¢~veC¢7)-l/2f 
i=l 

n 

= n¢~ve- 20"n¢~ve + 0" 2(¢:ve)2 2)¢7)-l 

::: n¢~ve(l - 20" + 0" 2¢:vef¢~in) 

= n¢~ve(l - 20" + 0"28k) 

i=l 

since gk ::: 1 

Chap. 7 

(7.103) 

Combining the last two inequalities in (7.103) with (7.102), we obtain the inequality 
(7.97a). 

Notice that x7d~ + sfd;; =ILk- ¢f and (d~f (d;) = 0. We further have 

n 

¢;:;,' = (ljn) L ¢7+1 = (ljn)(xk+l)T (sk+') 

i=l 

(7.104) 

Since ILk = O"¢~ve = O"(cT xk- bT wk)jn, Equation (7.97b) follows immediately. 
Recalling the definitions (7.94), (7.95), and (7.96), we see that 

¢~fr{ = 1/lk ({3k) = ¢!un + f3k ( r ¢;ve - ¢~in) 

Together with (7.104), we have 

gk+l _ ~ = ¢~ve + f3k ( O"¢~ve - ¢~ve) ()" 

r ¢~in+ f3k ( r¢~ve -¢~in) r 

_ (1 - f3k) ( r¢~ve - O"¢~in) 

- [¢!un + f3k (r¢~ve- ¢~in)Jr 

(7.105) 

[ 
rek f3k l ( k ()") - 1 - a - - o .1 06) 

- 1-(1-r8k)f3k r 

When gk ::: O"jr, the right-hand side of (7.106) becomes nonpositive. Conse­
quently, so does the left-hand side, and gk+I ::: O"jr. This proves (7.97d). 

On the other hand, when gk > T• (7.106) implies that 

gk+l- ~ < [1- r8kf3k ] (ek- ~) (7.107) 
r- 1+r8kf3k r 

Note that (7.97a) implies 
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Substituting this inequality into (7.107), we have the result (7.97c). 
Finally, let us prove (7.98a) and (7.98b) in case f3k = 1. It is not difficult to see 

that (7.98a) can be derived in the same way as we derive (7.97b). As to (7.98b), we first 
note that as f3k = 1, 

for i = 1, 2, ... , n (7.109) 

Hence, 

(7.110) 
r 

and the proof is complete. 

In view of Theorem 7 .3, if k* is the earliest iteration at which ek* :=: CJ 1 r, then 

and 

~ < ek ::: (1- v/ (e0
- ~) + ~. v k < k* 

r r r 

ek () 
<-
- ' r 

v k:::: k* 

If such a k* does not exist, then ek > CJ I r, V k and 

IJ k k(O CJ) CJ - < e ::: (1- v) e - - + -, 
r r r 

Notice that 0 < v < 1, in either case we have 

ek::: max {CJir,e0}' v k 

\fk 

Then it is clear to see that ek gets smaller than (CJ lr) + 1 in at most O(n loge e 0 ) 

(say, k) iterations. Consequently, it follows from Equation (7.97a) that 

(1- CJ)f3k > 40 - CJ)(CJ- r) V k >_ k (7.111) 
- n(l + CJ 2)(% + 1)' 

By the inequality (7.97b), the duality gap cT xk- bT wk attains the given accuracy 
E and the iteration stops in at most 

0 ( n loge ( cT xo ~ bT wo)) 

additional iterations. Hence the primal-dual algorithm terminates in at most 

0 (n loge eO) + 0 ( n loge ( CT XO ~ bT WO)) 

iterations. 
There are various ways of setting the control parameters CJ and r such that 0 :=: 

r < CJ < 1. As a special case, we let CJ = 112 and r = 114, then 

k 4 
f3 >­

- nek 
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and (7 .80) follows. Also notice that at each iteration of the primal-dual algorithm, the 
computational bottleneck is the inversion of the matrix AD~AT. A direct implementation 
requires O(n3) elementary operations for matrix inversion and results in an O(n4L) 
complexity for the primal-dual algorithm. Definitely, this complexity can be reduced by 
better implementation techniques. 

7.3.5 Starting the Primal-Dual Algorithm 

In order to apply the primal-dual algorithm, we start with an arbitrary point (x0 ; w0 ; s0) E 

R"+m+n such that x0 > 0 and s0 > 0. 
In case Ax0 = b and AT w0 + s0 = c, we know x0 E S and (w0 ; s0) E T and we 

have a starting solution for the primal-dual algorithm. Otherwise, consider the following 
pair of artificial primal and dual linear programs: 

Minimize 

subject to 

T c x+nxn+l 

Ax + (b - Ax0)xn+l = b 

(AT w0 + s0 - c)T X+ Xn+2 =A 

(AP) 

where Xn+l and Xn+2 are two artificial variables and ;rr and A are sufficiently large positive 
numbers to be specified later; 

Maximize bT w + AWm+l 

subject to AT w +(AT w0 + s0
- c)wm+l + s = c 

(b- Ax0l w + Sn+l = 7r 

where Wm+J, Sn+l and Sn+2 are artificial variables. 
Notice that if we choose ;rr and A such that 

;rr > (b- Ax0)T w0 

Wm+l + Sn+2 = 0 

(s; Sn+l; Sn+2) ~ 0 

A > (AT w0 + s0 - c) T x0 

(AD) 

(7.112a) 

(7.112b) 

then (x0
, x~+ 1, x~+2) and (w0

, w~,+ 1; s0
, s~+ 1, s~+2 ) are feasible solutions to the artificial 

problems (AP) and (AD), respectively, where 

x~+l = 1 

x~+2 = A - (AT wo +so - c) T xo 

w~+l = -1 
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In this case, the primal-dual algorithm can be applied to the artificial problems 
(AP) and (AD) with a known starting solution. Actually, the optimal solutions of (AP) 
and (DP) are closely related to those of the original problems (P) and (D). The following 
theorem describes this relationship: 

Theorem 7.4. Let x* and (w*; s*) be optimal solutions of the original problems 
(P) and (D). In addition to (7.112a) and (7.112b), suppose that 

and 

Tr > (b - Ax0l w* 

Then the following two statements are true: 

(7.112c) 

(7.112d) 

(i) A feasible solution (x, Xn+l, Xn+2) of (AP) is a minimizer if and only if x solves 
(P) and Xn+l = 0. 

(ii) A feasible solution (w, Wm+l; s, sn+I, sn+2) of (AD) is a maximizer if and only if 
(w; s) solves (D) and Wm+l = 0. 

Proof. Since x* is feasible to (P), if we further define that x,~+l = 0 and x~+2 = ).. -
(AT w0 +s0 -cl x*, then (x*, x~+!, x~+2 ) is feasible to (AP). Suppose that (x, Xn+!, Xn+2) 

is feasible to (AP) with Xn+I > 0, then 

cT x* + nx,:+l = w*Tb = w*T (Ax+ (b- Ax0)xn+d 

Note that AT w* + s* = c, Xn+l > 0, and (7.112d). We see that 

T * + * ( *)T + T + C X TrXn+l < C- S X TrXn+l ::S C X TrXn+l 

since s*T x :;: 0. This means that (x, Xn+ 1, Xn+2) cannot be an optimal solution to (AP) un­
less Xn+l = 0. Furthermore, through the property of continuity, we know (x*, x~+l, x~+2 ) 

is an optimal solution to (AP). Therefore, if a feasible solution (x, :Xn+l, :Xn+2) of (AP) 
is optimal, then :Xn+l = 0 and cTx = cT x*. Because x satisfies all the constraints of (P), 
it must be an optimal solution to (P). 

Conversely, if (x, 0, :Xn+2) is a feasible solution of (AP) and xis an optimal·solution 
of (P), then the objective value cTx + TrXn+l coincides with the minimal value cT x* + 
nx~+l· Hence it is an optimal solution of (AP). This concludes the proof of part (i). 
Similarly, we can prove part (ii). 

7.3.6 Practical Implementation 

In the real implementation of the primal-dual algorithm, it is a very difficult task to keep 
(xk; wk; sk) E S x T due to numerical problems. Also the choice of the control parameters 
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greatly affects the performance of the algorithm. Much effort has been devoted to 
designing a version of the primal-dual algorithm for practical implementation. In this 
section, we introduce one version of the primal-dual algorithm that allows us to start 
with an arbitrary point (x0; w0 ; s0) with x0 , s0 > 0. This version produces a sequence of 
iterates { (xk; wk; sk)), with xk, sk > 0, which leads to an optimal solution, although they 
no l.c:mger stay on the curve of S x T. It is important to know that, at this moment, there 
i< 'iO rigorous convergence proof for this version of the primal-dual algorithm, but it is 
··,;dely used in many commercial packages. 

Moving direction. The basic idea of this version follows from the analysis of 
Section 3.2. Assume that we are at a point (xk; wk; sk) for some fJ-k > 0, such that 
xk, sk > 0. The Newton direction (d~; d~; d~) is determined by Equations (7.89a)­
(7.89c). Combining (7.89a), (7.89b), and (7.89c), we have 

(7.113a) 

where D~ = XkS/; 1 and Pk =I- DkAT(AD~AT)- 1 ADk, which is the projection matrix 

onto the null space of matrix ADk. 
If we further define that 

k kA A -1 
dxm = p, DkPkDkXk e, 

then (7.113a) becomes 

(7.113b) 

The first term of (7.113b) is usually called the centering direction, since in light of 
the potential push, it is nothing but the projection of the push vector (ljxk) which helps 
the algorithm stay away from the walls of the primal polytope. The second term is called 
the objective reduction direction, since it is the projected negative gradient of the primal 
objective function which leads to a reduction in the primal objective function. The third 
term is called the feasibility direction, since tk is a measure of primar feasibility. Also 
note that Adkx = 0, and Ad~ . = 0. Hence these two directions are in the null space of 

ctr obj 

matrix A, and the primal feasibility is solely affected by dkx . 
feas 

In practice, if we start with an arbitrary point (x0 ; w0 ; s0 ) with x0 , s0 > 0, the value 
of t0 might be very large, since x0 could be far from being feasible. At this point, the 
main effort of the algorithm will be in finding a feasible point near the central trajectory. 
Once a feasible solution is found (say, at the kth iteration) the algorithm will try to 
keep tk' = 0 for all k' ::: k, except for the case that feasibility is lost due to numerical 
truncation or round-off errors. In this way, d~1'"·' will eventually vanish from the picture. 

In a similar fashion one can carry out the analysis of moving directions on the dual 
side, i.e, d~ and d~. It is left as an exercise for the reader. 

Step-length. Once the moving direction is obtained, we are ready to move to a 
new point (xk+ 1; wk+ 1; sk+ 1) with xk+ 1 > 0 and sk+ 1 > 0. To do so, we let 

(7.114a) 
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wk+l = wk +,Bod~ 

sk+J = l +.Bod~ 

(7.114b) 

(7.114c) 

where ,Bp and ,80 are the step-lengths in the primal and dual spaces, respectively. The 
nonnegativity requirements of xk+ 1 and sk+ 1 dictate the choice of the step-lengths ,Bp 
and ,80 . One simple way, as we did before, is to take 

1 
,Bp = 

{1, -dUaxf} max 
(7.115a) 

and 

.Bo = 
1 

max {1, -dUasf} 
(7.115b) 

where a < 1, (d;); is the ith component of d~, xt is the ith component of xk, (d;); is 
the i th component of d~, and st is the i th component of sk. 

Adjusting Penalty Parameters and Stopping Rules. Notice that the mov­
ing direction at the kth iteration is determined by the value of the penalty parameter J.L k. 
Strictly speaking, the translation described above has to be carried out several times for 
a fixed value of J.Lk, so that the Newton steps actually converge to the central trajectory 
corresponding to that J.Lk. However, it is apparent that doing so would be an "overkill." 
Recall that at optimality J.Lk has to be brought to zero to satisfy the complementary slack­
ness. Therefore, in practical implementations, the value of J.Lk is reduced from iteration 
to iteration and only one Newton step is carried out for a given value of J.Lk. 

The way in which J.Lk can be reduced at each iteration is suggested by the algorithm 
itself. From Equation (7.76c) we see that J.L = s7 xjn. Plugging in the values of xk and 
sk gives us a reasonably good measure of the penalty parameter for the current point. 
According to our experience, sometimes, a lower value of J.i, say, O"[(skf xk]/n with 
a < 1, could accelerate the convergence of the algorithm. There have been other similar 
ideas reported by various authors on the choice of J.Lk. Nevertheless, the above simple 
rule seems to work well for a variety of practical problems solved by the authors. 

As far as the stopping rules are concerned, we may check the primal feasibility, dual 
feasibility, and complementary slackness. Notice that the primal feasibility is measured 
by tk, dual feasibility by uk, and complementary slackness by vk as defined by (7 .85). 

Step-by-Step Procedure. As a summary of our discussion, we now provide 
a step-by-step procedure for the implementation of the new version of the primal-dual 
interior-point algorithm. 

Step 1 (starting the algorithm): Set k = 0. Choose an arbitrary (x0 ; w0 ; s0) with 
x0 > 0 and s0 > 0, and choose sufficiently small positive numbers E1, E2, and E3 . 

Step 2 (intermediate computations): Compute 

(xk) T sk 
J.L k = -'---'---

n 
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tk = b- Axk, uk = c- ATwk- sk, vk = p}e- xkske, pk = Xk' 1vk, and 

i>~ = xksk'', where xk and sk are diagonal matrices whose diagonal entries are 
xf and sf, respectively. 

Step 3 (checking for optimality): If 

lit! I 
llbll + 1 < Ez, 

and 
!lull 

llcll + 1 

then STOP. The solution is optimal. Otherwise go to the next step. 
[Note: !lull and llcll are computed only when the dual constraints are violated. 

If u :::: 0, then there is no need to compute this measure of optimality.] 

Step 4 (calculating directions of translation): Compute 

d~ = ( AD~Ar) _, (AD~ (uk- pk) + tk) 

dk = uk- AT dk 
s w 

d; = i>~ (pk - d~) 

Step 5 (checking for unboundedness): If 

tk = 0, d; > 0, and cr d; < 0 

then the primal problem (P) is unbounded. If 

uk = 0, d~ > 0, 

then the dual problem (D) is unbounded. If either of these cases happens, STOP. 
Otherwise go to the next step. 

Step 6 (finding step-lengths): Compute the primal and dual step-lengths 

1 
f3p= {1 dkj k} max , - x, axi 

and 

where a < 1 (say, 0.99). 

Step 7 (moving to a new point): Update the solution vectors 

xk+l +- xk + f3pd; 

wk+l +- wk + .BDd~ 
sk+

1 +- sk + f3Dd~ 
Set k +- k + 1 and go to Step 2. 
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Now we present a numerical example to illustrate the algorithm. 

Example 7.3 

Consider the same problem as in Example 7.1 and Example 7.2. We begin with an arbitrary 
assignment of x0 = [1 1 1 l]T, w0 = [0 O]T, s0 = [1 1 1 1]T. With this 
information, we see that Xo, So and :06 are all equal to the identity matrix I, and p,O = 1. 

We now compute 

t0 =b-Ax0 = [14 13]r, u0 =c-ATw0 -s0 = [-3 0 -1 -1]T 

p0 = X0 1 v0 = [0 0 0 0] T v0 = J.L0e- XoSoe = [0 0 0 0] T, 

Therefore, 

d~ = (Afi6Arr
1 

[Afi6 (u0
- p

0
) + t0J = [~:~ ~:~] [ ~~] = [~:~] 

rl?=u0 -ATd~=[-9.4 -2.8 -7.4 -10.2]T 

d~ = D6(p0
- rl?) = [9.4 2.8 7.4 10.2] T 

Although d~ > 0 and cT d~ < 0, we see from t0 that the primal is still infeasible at 
this moment. Hence we proceed further. 

We choose a = 0.99. Using the formula to compute the step-lengths, we find that 
(Jp = 1.0 and fJD = 1/10.30303 = 0.097059. Therefore the updated solution becomes 

1] T + 1.0 X [9.4 2.8 7.4 10.2] T 

[10.4 3.8 8.4 11.2] T 

1] T + 0.0.097059 X ( -9.4 -2.8 -7.4 -10.2] T 

[0.08765 0.72824 0.28176 0.00999] T 

and 

w1 = (0 0) + 0.0.097059 X (6.4 9.2] T = [0.62118 0.89294] T 

The new solution x1 is already primal feasible, which is in tune with our previous 
discussions. The reader is urged to carry out more iterations to see that an optimal solution 
with 

x* = [30 15 0 0] T, w* = [-2 -1]r, and s* = [0 0 2 1]T 

is finally reached. 

7.3.7 Accelerating via Power Series Method 

As we discussed before, ideally it takes several Newton steps for a given penalty pa­
rameter to get onto the central trajectory, although we found that in most cases it is 
adequate to carry out only one Newton step for each penalty parameter. In order to track 
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the continuous central trajectories more closely, we may consider using the power-series 
approximation method as we did for the dual affine scaling algorithm. 

To simplify the discussion, we choose the smaller one between f3 p and f3 D as a 
common step-length f3 for both the primal and dual iterations and focus on a current 
point, say (x0 ; w0 ; s0). In the limiting case of f3 -+ 0, (7.84) can be rewritten in the 
following continuous version: 

A dx(f3) = t(f3) 
df3 

AT dw(f3) + ds(f3) = u(f) 
df3 df3 

S(f3)dx(f3) +X(f3)ds(f3) =v(f3) 
df3 df3 

(7.116a) 

(7.116b) 

(7.116c) 

such that x(O) = x0, w(O) = w0, and s(O) = s0, where t(f3) = b - Ax(/3), u(f3) = 
c-AT w(f3) - s(f3), v(f3) = p.,e- X(f3)S(f3)e, and X(f3) and S(f3) are the diagonal 
matrices whose diagonal elements are Xj ({3) and Sj ({3), respectively. 

Now, what we have to do is to find a solution to the system depicted by Equa­
tion (7.116) in the form of a truncated power series. This can be carried out exactly as 
we did for the dual affine scaling algorithm. The only difference is that, in addition to the 
expansions of w(f3) and s(f3), we need to consider the expansions of x(f3), t(f3), u(/3), 
and v(f3) around f3 = 0 as well. Owing to the similarity in procedure, the algebraic 
simplifications are left for the readers as an exercise. 

Based on our experience, we note the following characteristics of the primal-dual 
interior point algorithm: 

1. The algorithm is essentially a one-phase method. 

2. The computational burden per iteration is more or less the same as that of the 
primal or the dual affine scaling algorithm. 

3. The improvement in convergence rate obtained by performing the power series 
enhancement to the primal-dual algorithm is not as significant as we obtained in 
the dual affine scaling algorithm. 

4. Owing to its "self-correcting nature" (at least, in the case of restoring feasibility 
that might have been lost due to numerical errors of computers), the primal-dual 
algorithm is found to be numerically robust. 

7.4 CONCLUDING REMARKS 

In this chapter we have studied the basic concepts of affine scaling including the primal, 
dual, and primal-dual algorithms. Many extensions have been made to enhance the basic 
affine scaling algorithms. However, it is important to understand that the research work 
in this area is still ongoing. Different barrier functions including the entropy and inverse 
functions have been proposed. Unfortunately, no polynomial convergence result has 
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been achieved at this moment. A unified treatment will definitely help the development 
of the interior-point methods for linear programming. The idea of using interior-point 
methods to solve quadratic and convex programming problems with linear constraints 
has also been explored by many researchers. We shall study these interesting topics in 
later chapters. 
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EXERCISES 

7.1. You are given two algorithms, A and B. Algorithm A solves systems of linear equations; 
Algorithm B solves linear programming problems. 
(a) How can you use Algorithm A to solve a linear programming problem? 
(b) How can you use Algorithm B to solve a system of linear equations? 
(c) Combining (a) and (b), what is your conclusion? Why? 

7.2. Consider the following linear programming problem: 

Minimize -x, + 1 

subject to x3 - x4 = 0 

(a) Draw a graph of its feasible domain. Notice that (0, 0, 0.5, 0.5) is a vertex. Use the 
revised simplex method to find its moving direction at this vertex and display it on the 
graph. 

(b) Note that (0.01, O.Ql, 0.49, 0.49) is an interior feasible solution which is "near" to the 
vertex in (a). Use Karmarkar's algorithm to find its moving direction at this solution 
and display it on the graph. 

(c) Use the primal affine scaling algorithm to find its moving direction at 
(0.01, 0.01, 0.49, 0.49) and display it on the graph. 

(d) Use the primal affine scaling algorithm with logarithmic barrier function to find its 
moving direction at (0.01, 0.01, 0.49, 0.49) and display it on a graph. 

(e) Compare the directions obtained from (a) -(d). What kind of observations can be made? 
Do you have any reason to support your observations? 

7.3. Focus on the same linear programming problem as in Exercise 7.2. 
(a) Find its dual problem and draw a graph of the dual feasible domain. 
(b) Show that (1, -2) is an interior feasible solution to the dual linear program. 
(c) Apply the dual affine scaling algorithm to find its moving direction at this point and 

display it on the graph of the dual feasible domain. 
(d) Is this moving direction pointing to the dual optimal solution? 
(e) Apply the dual affine scaling algorithm with logarithmic barrier function to find its 

moving direction at this point and display it on the graph of the dual feasible domain. 
(f) Is the direction obtained in (e) better than that in (c)? Why? 

7.4. Focus on the same linear programming problem again. 
(a) Starting with the primal feasible solution x = (0.01, 0.01, 0.49, 0.49) and dual feasible 

solution w = (1, -2), apply the primal-dual algorithm as stated in Section 7.3.6 under 
"Step-by-Step Procedure" to find its moving directions dx and dw. 

(b) Display the moving directions on the corresponding graphs. 
(c) Can you make further observations and explain why? 

7.5. Given a linear programming problem with bounded feasible domain, if the problem is both 
primal and dual nondegenerate and xk is a primal feasible solution, show that 
(a) AXk is of full row rank (assuming that m < n). 
(b) The set C defined in (7.15) is a set of vertices of the polytope P of primal feasible 

domain. 



198 Affine Scaling Algorithms Chap. 7 

7.6. Consider a linear programming problem with lower bounds: 

Minimize c7 x 

subject to Ax = b 

where A is an m x n matrix with full row rank and q E R". 
(a) Convert it into a standard form linear programming problem with exactly n variables. 
(b) Find the dual linear program of (a). Show that when q = 0, a regular dual program is 

obtained. 
(c) Our objective is to design an interior-point method to solve the problem. The basic 

philosophy is to map a current interior solution xk ( Axk = b and xk > q ) to the 
"center" of the first 011hant of R" (i.e., e = (l, ... , ll). 
(i) Find such a transformation and prove it is one-to-one and onto from the set {x E 

R" I x 2: q} to the set (y E R" I y 2: 0}. 
(ii) Write down the corresponding linear program in the transformed space. 

(iii) In the transformed space, project the negative gradient of the objective function into 
the null space of the constraints. What is the moving direction? 

(iv) Derive the corresponding moving direction in the original space. 
(v) Apply the primal affine scaling algorithm to the conve11ed standard linear program 

of (a). Compare the moving direction with the one obtained in (iii). What is your 
conclusion? 

(vi) Continue the work of (iii): how do you choose an appropriate step-length to keep 
feasibility? 

(vii) Give the formula for updating a current interior solution. 
(viii) What is your stopping rule? 

(ix) How do you find an initial interior solution? 
(x) Finally, state a step-by-step procedure to solve a linear programming problem with 

lower bounds. 

7.7. Consider the primal affine scaling with logarithmic barrier function. Define P AXk to be 
the projection map onto the null space of matrix AXk. and show that the moving direction 
(7.49a) at a current solution xk can be written as 

7.8. In this problem, we try to outline a proof showing the primal affine scaling algorithm with 
logarithmic barrier function is a polynomial-time algorithm. This proof is due to Roos and 
Vial. 
(a) Show that 

where z (xk, ti) minimizes II :kz -ell 
with the constraints A7 y+z =candy E Rm. [Hint: Consider the first-order optimality 
conditions of the minimization problem.] 
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(b) Problem (a) indicates that the 2-norm of 

(
Xkc ) p AXk ---;;; - e 

can be used as a measure for the distance of a given point xk to the point xk (J-Lk) on 
the central trajectory. Let us denote this distance measure by o(xk, J-Lk), i.e., 

Show that o(xk(J-Lk), J-Lk) = 0 and z(xk(J-Lk), J-Lk) = z(J-Lk). 

(c) A new solution is given by xk+ 1 = xk +dt. Show that 

k+l k X~z (xk' 1-Lk) 
x = 2x - _:.:--'--,--.:... 

I-Lk 

(d) Prove that, if o(xk, J-Lk) < 1, then xk+l is an interior feasible solution to (P). Moreover, 
o(xk+ 1, J-Lk) ::S o(xk, J-Lk). This implies that if we repeatedly replace xk by xk+ 1, with 
fixed I-Lk, then we obtain a sequence of points which converges to x*(J-Lk) quadratically. 

(e) Choose 0 < e < I and let J-Lk+l = (l - e)J-Lk. Show that 

o (xk+t, I-Lk+ I) < I~ e (o(xk+l, J-Lk) + eJ/1) 

(f) Let o(xk, J-Lk) ::S 1/2 and e = I/6J/1. Show that o(xk+ 1, Jl-k+J) ::S 1/2. 
(g) Notice that when z(xk, J-Lk) is determined, then y(xk, J-Lk) is also determined by AT y + 

z =c. Now, if o(xk, J-Lk) ::S l, show that y(xk, J-Lk) is dual feasible. Moreover, 

J-Lk(n _ o(Xk, J-Lk)J/1) ::S CT Xk _ bT y(Xk, J-Lk) ::S J-Lk(n + o(Xk, J-Lk)J/1) 

(h) Given an initial interior feasible solution x0 > 0 and a barrier parameter f-Lo > 0 such 
that o(x0, Jl-0) .:s 1/2. Also let q be a large positive integer. We state our algorithm as 
follows: 
begin 

end 

e := I/6J/1, x := x0
, J-L := J-L0; 

while ntL > e-4 do 

begin 

end 

z := z(x, J.L); 

X2z 
x:=2x--; 

1-L 

J-L := (1- e)J-L; 

Let q0 = -loge(nJ-L0), and show that the algorithm terminates after at most 6(q-q0)Jn 
iterations. The final points x and y(x, J-L) are interior solutions satisfying 
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7.9. For the dual affine scaling algorithm, explain the meaning of "primal estimate" as defined 
in (7.59). 

7.10. For the primal-dual algorithm, try to decompose d~ and d: as we did for d~ in (7.113). 
Then analyze different components. 

7.11. We take x0 = e, w0 = 0, and s0 = e. 
(a) Show that (7.112a) becomes n > 0. 
(b) Show that (7.112b) becomes A. > n- cT e. 
(c) What about (7.112c) and (7.112d)? 

7.12. Derive the power-series expansions for x(/3), w(/3), s(/3), t(/3), u(/3), and v(/3) in the 
primal-dual algorithm. 

7.13. Develop computer codes for the primal affine scaling, dual affine scaling, and primal-dual 
algorithms and test those problems in Exercise 3.16. 


