
ISE 789 / OR 791:  LECTURE 4 -

QUADRATIC OPTIMIZATION MODEL

1.  Functions – convex and nonconvex quadratic functions

2.  Graphs, contours, governing matrix

3.  Systems – Method of least squares, k-means clustering, 

Markowitz mean-variance model

4.  Programs - linearly constrained QP (QP) and

quadratically constrained QP (QCQP)



Optimization models to be covered

1. Linear Optimization

2. Integer Linear Optimization

3. Quadratic Optimization

4. Linear Conic Optimization

5. Nonlinear Optimization



Structure of optimization models

1. Functions

- form, graph, contour, first/second order information

2. Systems

- system of equations

- system of inequalities

3. Programs - Duality and optimality

- primal problem

- dual problem

- complementarity



Quadratic functions

• Quadratic function: a function 𝑓:ℝ𝑛 → ℝ is quadratic if

where 𝑀 ∈ ℝ𝑛×𝑛, 𝒃 ∈ ℝ𝑛, 𝐱 ∈ ℝ𝑛, 𝑐 ∈ ℝ.

General form:

where 𝑄 ∈ 𝕊𝑛 (a symmetric matrix).

- Why?   𝑄 =
𝑀+𝑀𝑇

2

𝑓 𝐱 =
1

2
𝐱𝑇𝑀𝐱 + 𝒃𝑇𝐱 + c

𝑓 𝐱 =
1

2
𝐱𝑇𝑄𝐱 + 𝒃𝑇𝐱 + c



Quadratic functions - I
• Properties:  

(i) If 𝑓 and 𝑔 are quadratic and 𝛼 ∈ ℝ, then 𝑓 + 𝑔, 𝑓 − 𝑔, 𝛼𝑓

are quadratic.

- why?

(ii) First order information 

• 𝛻𝑓 𝐱 = 𝑄𝐱 + 𝒃

- implications?

(iii) Second order information

• 𝐹 𝐱 = 𝑄

- implications?



Graphs & contours of quadratic functions 

• Quadratic functions of two variables (from umich.edu 

Math217 Notes 8.3)



Graphs and contours – cont’

• Quadratic functions with two variables



Special symmetric matrices

• Definition: A real symmetric matrix 𝑀 of degree 𝑛 (𝑀 ∈ 𝕊𝑛) 

is 

(i) positive semidefinite (psd), i.e., 𝑀 ∈ 𝕊+
𝑛 , if

𝐱T𝑀𝐱 ≥ 0, ∀𝐱 ∈ ℝ𝑛;

(ii) negative semidefinite (nsd), if 

𝐱T𝑀𝐱 ≤ 0, ∀𝐱 ∈ ℝ𝑛;

(iii) indefinite, if 𝑀 is neither psd nor nsd. 

Properties: 𝑀 is psd ⇔ −𝑀 is nsd; 

𝛼𝑀 is psd, for 𝛼 ≥ 0; nsd for 𝛼 ≤ 0;

𝑀,𝑁 are psd (nsd) ⇒ 𝑀 +𝑁 is psd (nsd).



Special symmetric matrices

• Definition: A real symmetric matrix 𝑀 of degree 𝑛 (𝑀 ∈ 𝕊𝑛) 

is 

(i) positive definite (pd), i.e., i.e., 𝑀 ∈ 𝕊++
𝑛 , if

𝐱T𝑀𝐱 > 0, ∀𝐱 ∈ ℝ𝑛\{0};

(ii) negative definite (nd), if 

𝐱T𝑀𝐱 < 0, ∀𝐱 ∈ ℝ𝑛\{0};

Properties: 𝑀 is pd ⇔ −𝑀 is nd; 

𝛼𝑀 is pd, for 𝛼 > 0; nd for 𝛼 < 0;

𝑀,𝑁 are pd (nd) ⇒ 𝑀 +𝑁 is pd (nd).



Special symmetric matrices

• Theorem: A symmetric matrix 𝑀 of degree 𝑛 is 

(i) psd (pd)  iff all eigenvalues are non-negative (positive);

(ii) nsd (nd) iff all eigenvalues are non-positive (negative).

Why? Spectral decomposition

For a non-defective (diagonalizable) matrix 𝑀 and 𝐱 ∈ ℝ𝑛, we have

𝐱T𝑀𝐱 = 𝐱T𝑈Λ𝑈𝑇𝐱 = σ𝑖=1
𝑛 𝜆𝑖 𝐱T𝑈

𝑖

2

where Λ = 𝑑𝑖𝑎𝑔 𝜆1, … , 𝜆𝑛 and matrix 𝑈 contains the 𝑛 orthogonal 

eigenvectors of 𝑀. 



Properties:

• 𝑀 is psd (pd) ⇒ all diagonal elements are nonnegative (positive); 

• 𝑀 is psd ⇒ 𝑀 = 𝑀
1

2 𝑀
1

2 (𝑀
1

2 is a psd square root matrix);

• 𝑀 is pd ⇒ 𝑀 is nonsingular and 𝑀−1 is pd.

Special insight: a quadratic function defined by a non-

defective matrix can be transformed to an angle (in view of 

the coordinates referring to the 𝑛 orthogonal eigenvectors) 

such that either you see a convex quadratic curve, a flat 

line, or a concave quadratic curve along each coordinate.

Special symmetric matrices



Quadratic function - II

• Properties:  

• (iv) A quadratic function 𝑓 𝐱 =
1

2
𝐱𝑇𝑄𝐱 + 𝒃𝑇𝐱 + c

with 𝑄 ∈ 𝕊𝑛 is a convex function 

iff 𝑄 is positive semidefinite (i.e., 𝑄 ∈ 𝕊+
𝑛 ).

• (v) 𝑓 𝐱 =
1

2
𝐱𝑇𝑄𝐱 + 𝒃𝑇𝐱 + c is strictly convex 

iff 𝑄 is positive definite (i.e., 𝑄 ∈ 𝕊++
𝑛 ).

• (vi) 𝑓 𝐱 =
1

2
𝐱𝑇𝑄𝐱 + 𝒃𝑇𝐱 + c with 𝑄 ∈ 𝕊𝑛 is concave

iff 𝑄 is negative semidefinite (i.e., −𝑄 ∈ 𝕊+
𝑛).

• (vii) 𝑓 𝐱 =
1

2
𝐱𝑇𝑄𝐱 + 𝒃𝑇𝐱 + c is strictly concave

iff 𝑄 is negative definite (i.e., −𝑄 ∈ 𝕊++
𝑛 ).



How quadratic functions come into picture?

• Approximation – Taylor’s approximation

- For a function 𝑓 ∈ 𝐶2(ℝ𝑛) around a point 𝐱’, we have

𝑓 𝐱 ≈ 𝑓 𝐱′ + 𝛻𝑓 𝐱′ 𝑇 𝐱 − 𝐱′ +
1

2
𝐱 − 𝐱′ 𝑇𝐹(𝐱′) 𝐱 − 𝐱′



How quadratic functions come into picture?

• Distance – measurement of error or discrepancy

• For a point 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑛
𝑇 and point 𝐲 = 𝑦1, 𝑦2, … , 𝑦𝑛

T, the 

Minkowski distance of order 𝑝 ≥ 1 (𝒑-norm distance) is defined as:

• (1-norm distance)  = σ𝑖=1
𝑛 |𝑥𝑖 − 𝑦𝑖 |

• (2-norm distance)  = σ𝑖=1
𝑛 |𝑥𝑖 − 𝑦𝑖 |

2
1

2

• (𝑝-norm distance)  = σ𝑖=1
𝑛 |𝑥𝑖 − 𝑦𝑖 |

𝑝
1

𝑝

• (infinity norm distance)  = lim
𝑝→∞

σ𝑖=1
𝑛 |𝑥𝑖 − 𝑦𝑖 |

𝑝
1

𝑝

= max{ 𝑥1 − 𝑦1 , 𝑥2 − 𝑦2 , … , 𝑥𝑛 − 𝑦𝑛 }

• 𝐱 − 𝐲 2
2 is a convex quadratic function.

• 𝐱 2
2 = 𝐱𝑇𝐱 is a strictly convex quadratic function whose 

gradient = 2𝐱 and Hessian = 2 𝐼 .



Logistics system – location problem

• Given the locations {𝐱1, 𝐱2, … , 𝐱𝑛} of 𝑛 stores, find a 

location 𝐱 in a feasible area 𝐶 for hosting a warehouse 

that serves the stores in a most economic manner.

or,



Method of least squares for data fitting

• Fit the data to unveil hidden relations



Method of least squares for data fitting

• Legendre’s method (1805)

- Given 𝑛 data points { (𝐱𝑖 , 𝑦𝑖) | 𝑖 = 1, . . , 𝑛 }

with 𝑦 depending on 𝐱 in the form 

of f (𝐱, 𝜷) (called a model) 

where 𝜷 is a vector of 𝑚 parameters,

our goal is to find the parameter values 

for the model that “best fit” the data.

- The method of least squares is often used in regression

analysis to generate estimators and other statistics.



Methods of least squares for data fitting
• Legendre’s method (1805)

- residual 

- sum of squared residuals

- minimize S by setting the gradient to zero

- solve a system of 𝑚 equations in 𝑚 variables for 𝜷.



Supervised learning – basic SVM model

• Linear separation with maximum margin (distance)

equivalently,



Quadratic support vector machine (QSVM)

• Motivation: 

- Not linearly separable datasets may be nonlinearly

separable



Quadratic support vector machine (QSVM)

• Basic idea: (Jian Luo 2016)

- supervised learning using a quadratic surface to

separate two classes of data points

Equivalently,



Unsupervised learning - clustering

• Uncover some hidden structure of datasets by clusters

• Clustering based on similarity

• Similarity based on distance

• <From https://mubaris.com/posts/kmeans-clustering/>



K-means clustering

• Centroid-based k-means clustering 

(Stuart Lloyd of Bell Labs, 1957)

Given a set of observations 𝐱1 , 𝐱2, … , 𝐱𝑛 , where each observation is a 𝑑-

dimensional real vector, k-means clustering aims to partition the 𝑛

observations into 𝑘 (≤ 𝑛) sets 𝑺 = {𝑆1, 𝑆2, … , 𝑆𝑘} so as to minimize the within-

cluster sum of squares (WCSS) (i.e. variance). Formally, the objective is to 

find:

where 𝝁𝑖 is the mean of data points in 𝑆𝑖.



K-means clustering

• The problem is proven to be NP-hard.

- Why ?

How about an IP formulation? 

- what do we have in hand?

- what do we want to achieve?

- what are variables? constraints? objective?



1.

2. 

K-means (IP model) 

IP model for k-means clustering
Define:



Method for k-means clustering

• B&B? B&C? Heuristics? 

Assume 𝐾 is given and 𝐱𝑖 ∈ ℝ𝑑

Step 1: assign any 𝐾 points 𝝁𝑘 ∈ ℝ𝑑 , 𝑘 = 1, … , 𝐾

Step 2: Find 𝑘∗ = argmin
𝑘

||𝐱𝑖 − 𝝁𝑘||, 𝑖 = 1,… , 𝑛. Assign point 𝐱𝑖 to class 𝑆𝑘∗ .

Step 3: update 𝝁𝑘 = σ𝑖∈𝑆𝑘

𝐱𝑖

card(𝑆𝑘)
, 𝑘 = 1, … , 𝐾.

Step 4: Go to Step 2 until all 𝝁𝑘 remain unchanged.

<https://www.youtube.com/watch?v=_aWzGGNrcic>



Questions

• How good is the heuristic algorithm?

- will it converge?

- converge to an optimal solution?

- how fast?

- can you develop a better algorithm?



How many clusters should there be? 

• Can we learn form the dataset to decide an optimal K?

• On which basis?
- minimize the “intra-cluster distance”? 

- maximize the “inter-cluster distance”?

• What’s your ideas?



How quadratic functions come into picture

• Covariance – measurement of risk

- A random variable has its mean (average) and variance (spread).

- Intuitively, the covariance matrix of a random vector generalizes the 

notion of variance to multiple dimensions. 

- Covariance matrix (also called dispersion matrix or

variance–covariance matrix) is a square matrix giving the covariance 

between each pair of elements of a given random vector. 

- Each diagonal element of a covariance matrix reports the variance

of a corresponding variable (covariance of a random variable with

itself).

- In statistics, the covariance matrix of a multivariate probability 

distribution is always positive semi-definite; and it is positive definite 

unless one variable is an exact linear function of the others.  



How quadratic functions come into picture

• Covariance – measurement of risk

• If the entries in the column vector 𝐗 = 𝑋1, 𝑋2, … , 𝑋𝑛
𝑇 are random 

variables, each with finite variance and expected value, then the 

covariance matrix 𝐾𝐗𝐗 is the matrix whose (𝑖, 𝑗) entry is the variance

𝐾𝑋𝑖𝑋𝑗 = cov 𝑋𝑖 , 𝑋𝑗 = 𝐸[(𝑋𝑖 − 𝐸[𝑋𝑖])(𝑋𝑗 − 𝐸[𝑋𝑗])]

where the operator 𝐸 denotes the expected value (mean).



How quadratic functions come into picture

• Correlation matrix

• Equivalently, the correlation matrix can be seen as the covariance 

matrix of the standardized random variables 
𝑋𝑖

𝜎 𝑋𝑖
for 𝑖 = 1, … , 𝑛.

• Each element on the principal diagonal of a correlation matrix is the 

correlation of a random variable with itself, which always equals 1. 

Each off-diagonal element is between -1 and +1 inclusively.



How quadratic functions come into picture

• Risk of investment

- Asset is something valuable;

- Portfolio is a combination of assets; σ𝑖=1
𝑛 𝑤𝑖 = 1;

- Return of each asset is a random variable 𝑟𝑖;

- Expected return of asset 𝑖 = 𝐸 𝑟𝑖 (𝑖. 𝑒. ҧ𝑟𝑖);

- Expected return of investment = σ𝑖=1
𝑛 𝑤𝑖 ҧ𝑟𝑖;

- Variance of the return vector is the covariance matrix 𝐾𝒓𝒓;

- Risk of investment = 𝒘𝑇𝐾𝒓𝒓𝒘, a convex quadratic function of 𝒘.



Financial system – portfolio selection

• Harry Max Markowitz (1927 - ) 

(PhD of Economics at U Chicago, 1954, 

Nobel Prize 1990)

• Mean-variance model (1952, Portfolio Selection)

• Assuming that the returns of assets follow a multivariate normal 

distribution, the return of a portfolio can be completely described 

by the expected return and variance of the forming assets.



Mean-variance model

• Markowitz mean-variance model (QP model)

• For a given set of 𝑛 assets, let 𝒓 = 𝑟1, … , 𝑟𝑛
𝑇 and 𝐷 = 𝐷𝑖𝑗 𝑖,𝑗=1

𝑛
denote the 

vector of expected returns and matrix of covariance, respectively. To find an 

investment portfolio with the minimum risk subject to receiving an expected 

return, we may consider the following Markowitz mean-variance model 

(Markowitz, 1952):

(MV)

where 𝐷 is pd, 𝒓 ∈ ℝ𝑛, 𝒆 = 1,… , 1 𝑇 ∈ ℝ𝑛 and 𝑟0 is given. 

• This is a convex quadratic program with linear constraints.



Variations of mean-variance model

• (V1) 

where 𝛿 > 0 is a given tolerance.

This is a convex program with quadratic constraints.

• (V2)

This is a “multi-criteria decision making (MCDM)” problem.



Cardinality constrained mean-variance model

• CCMV model:

- For a common practice, investors may confine 

themselves to selecting a small number of 𝑠 (𝑠 << 𝑛)

assets in forming a portfolio for effective management.

(CCMV)

where ||𝐱||0 denotes the # of nonzero entries in 𝐱.

• This is a quadratic program with non-differentiable

constraints.



Cardinality constrained mean-variance model

• CCMV - MIQP model:

• Problem (CCMV) can be reformulated as the following mixed 

integer quadratic program (MIQP)

(CCMV_MIQP)

where 𝒛 ∈ {0,1}𝑛 is a binary auxiliary variable.

• This is a mixed-integer quadratic program.



Questions

• Is the (MV) model an easy problem to solve?

Yes, (MV) is (polynomial-time) solvable!

• Is the (CCMV) model a hard problem to solve? 

Yes, (CCMV) is NP-hard!

How to find an efficient solution method?



Structure of optimization models

1. Functions

- form, graph, contour, first/second order information

2. Systems

- system of equations

- system of inequalities

3. Programs - duality and optimality

- primal problem

- dual problem

- complementarity



Linearly constrained quadratic program (LCQP)

• Given 𝑄 ∈ 𝕊𝑛, 𝐴 ∈ ℝ𝑚×𝑛, 𝒃 ∈ ℝ𝑚, 𝒄 ∈ ℝ𝑛,  a linearly 

constrained quadratic program is given by

• (LCQP)

• When 𝑄 ∈ 𝕊+
𝑛 , (LCQP) is a convex optimization 

problem, which is commonly called a “quadratic 

program.”



Quadratic program (QP)
• Given (𝑄, 𝐴, 𝒃, 𝒄) in proper dimensions, we have a pair 

of (linearly constrained) convex quadratic programs:



Duality theory 

• Strong duality holds for convex (QP).

Implications:   - no duality gap

- primal approach, dual approach,

primal-dual approach



Solution methods 

- Optimality may happen at any feasible point.

- Many solution methods

- conjugate gradient method 

- preconditioned conjugate gradient method

- active set algorithm

- interior-point methods (polynomial-time solvable)



Quadratically constrained quadratic program (QCQP)

• QCQP:



Convex QCQP (CQCQP)

• When the governing matrices are positive semidefinite, 

i.e.,     

𝑄𝑗 ∈ 𝕊+
𝑛 , for 𝑗 = 0,1,… ,𝑚,

(QCQP) becomes a convex optimization problem.

• (CQCQP) is equivalent to a “second order cone program” 

(SOCP), which is a special class of the linear conic 

optimization problems (LCoP).



SOCP

• Second order cone

• Definition:

• Second order cone programming



Convex QCQP ⇒ SOCP

• CQCQP can be equivalently formulated as an SOCP



Duality theory

• As a second order cone programming problem, CQCQP 

has a dual problem that follows the strong duality 

theorem.

• Theorem (SOCP duality theorem)

i. If either SOCP or SOCD is unbounded, then the other one is 

infeasible.

ii. If there exists a feasible solution ത𝐱 such that ത𝐱 ∈ int 𝐾 , and 

𝑣(SOCP) is finite, then there exists 𝒚∗, 𝒔∗ ∈ feas(SOCD) such 

that 𝑣 SOCP = 𝒃𝑇𝒚∗ = 𝑣 SOCD .

iii. If there exists a feasible solution ഥ𝒚, ത𝒔 such that ത𝒔 ∈ int 𝐾 , and 

𝑣(SOCD) is finite, then there exists 𝐱∗ ∈ feas(SOCP) such that 

𝑣 SOCP = 𝒄𝑇𝐱∗ = 𝑣 SOCD .



Solution methods

• As a second order cone program, CQCQP  is polynomial-

time solvable.

• Interior-point methods are available 

• - primal approach

• - dual approach

• - primal-dual approach


