LECTURE 3: OPTIMALITY CONDITIONS

- 1. First order and second order information
- Necessary and sufficient conditions of optimality
- 3. Convex functions

General setting

General form nonlinear programming problem

Min
$$f(x)$$

s. t. $x \in S \subset E^n$

where S can be a "simple" set

or
$$S \triangleq \{x \in E^n \mid g_i(x) \le 0, i = 1, ..., m;$$

 $h_j(x) = 0, j = 1, ..., n;$
 $x \in X\}$

Local minimum

Definition A point $x^* \in S$ is said to be a relative minimum point or a local minimum point of f over S if there is an $\epsilon > 0$ such that $f(x) \geq f(x^*)$ for all $x \in S \cap N(x^*, \epsilon)$, where $N(x^*, \epsilon)$ is the neighborhood of x^* of radius ϵ . If $f(x) > f(x^*)$ for all $x \in S \cap N(x^*, \epsilon)$ and $x \neq x^*$, then x^* is said to be a strictly relative minimum point of f over S.

Global minimum

Definition A point $x^* \in S$ is said to be a global minimum point of f over S if $f(x) \geq f(x^*)$ for all $x \in S$. If $f(x) > f(x^*)$ for all $x \in S$, $x \neq x^*$, then x^* is said to be a strictly global minimum point of f over S.

Comments

- We always intend to seek a global minimum when formulating an optimization problem.
- In most situations, optimization theory and methodologies only enable us to locate local minimums.
- Global optimality can be achieved when certain convexity conditions are imposed.

A general iterative scheme

A general scheme of an iterative solution procedure:

Step 1: Start from a feasible solution x in S.

Step 2: Check if the current solution is optimal.

If the answer is Yes, stop.

If the answer is No, continue.

Step 3: Move to a better feasible solution and return to Step 2.

What are the feasible moves that lead to a better solution?

Feasible direction

- Along any given direction, the objective function can be regarded as a function of a single variable.
- Given x ∈ S ⊂ Eⁿ, a vector d ∈ Eⁿ is a feasible direction at x if there is an ᾱ > 0 such that x + αd ∈ S for all α, 0 ≤ α ≤ ᾱ.
- A feasible direction is a good direction, if the objective function is reduced along the direction.

How do we know we have attained a minimum solution?

- First order necessary condition
 - Proposition. Let S be a subset of Eⁿ and let f
 ∈ C¹ be a function on S. If x* is a relative
 minimum point of f over S, then for any d ∈ Eⁿ
 that is a feasible direction at x*, we have
 ∇f(x*)d ≥ 0.
 - Corollary (Unconstrained case). Let S be a subset of Eⁿ and let f ∈ C¹ be a function on S.
 If x* is a relative minimum point of f over S and if x* is an interior point of S, then ∇f(x*) = 0.

Example 1

Example: Constrained problem:

min
$$f(x_1, x_2) = x_1^2 - x_1 + x_2 + x_1x_2$$

s. t. $x_1, x_2 \ge 0$

Check if $x^* = [1/2, 0]$ satisfies the first-order necessary condition or not.

$$\nabla f(x) \mid_{x^*} = [2x_1 - 1 + x_2, 1 + x_1] \mid_{x_1 = 1/2, x_2 = 0}$$

= $[0, 3/2]$

 $\Rightarrow \nabla f(x^*)d \ge 0$ for all d with $d_2 \ge 0$ (feasible direction at x^*).

Example 2

Example: Unconstrained problem:

$$\min f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2 - 3x_2$$

Global minimum is known at $x_1 = 1$, $x_2 = 2$.

At this point,

$$\nabla f(x) = [2x_1 - x_2, -x_1 + 2x_2 - 3]$$

= $[0, 0]$

Comments

- The necessary conditions in the pure unconstrained case lead to a system of *n* equations in *n* unknowns.
- Is the condition a sufficient condition? Why?
- How about the condition of

$$\nabla f(x^*)d > 0$$
?

Proof of the proposition

If \exists a feasible direction $d \in E^n$ at x^* with $\nabla f(x^*)d$ < 0, then $\exists \bar{\alpha} > 0$ s.t. $x(\alpha) = x^* + \alpha d \in S$ with $0 < \alpha < \bar{\alpha}$ and

$$f(x(\alpha)) = f(x^*) + \nabla f(x^*)(x(\alpha) - x^*) + O(\alpha^2)$$

 $= f(x^*) + \alpha \nabla f(x^*)d + O(\alpha^2)$
 $< f(x^*)$, if α is sufficiently small.

This contradicts to the fact that x^* is a local minimum point of f over S.

Corollary – Variational Inequalities

Proposition: Let S ⊂ Eⁿ be convex and
 f: Eⁿ → R be C¹(S). If x* is a relative
 minimum point of f over S, then x* is a
 solution of the following variational inequality
 problem:

Find
$$x \in S$$

 (VI) s. t. $\langle x' - x, \nabla f(x) \rangle \ge 0$, $\forall x' \in S$.

Second order conditions

Proposition (Second-order necessary conditions). Let S be a subset of E^n and let $f \in C^2$ be a function on S. If x^* is a relative minimum point of f over S, then for any $d \in E^n$ that is a feasible direction at x^* , we have

- (i) ∇ f(x*)d ≥ 0.
- (ii) if ∇f(x*)d = 0, then d^T∇²f(x*)d ≥ 0.

Proof:

$$f(x(\alpha)) = f(x^*) + \frac{1}{2}(x(\alpha) - x^*)^T \nabla^2 f(x^*)(x(\alpha) - x^*) + O(\alpha^3)$$

= $f(x^*) + \frac{1}{2}\alpha^2 d^T \nabla^2 f(x^*)d + O(\alpha^3)$

Example 3

Example: Constrained problem:

min
$$f(x_1, x_2) = x_1^2 - x_1 + x_2 + x_1x_2$$

s. t. $x_1, x_2 \ge 0$

Check if $x^* = [1/2, 0]$ satisfies the second-order necessary condition or not.

$$\nabla f(x) |_{x^*} = [0, 3/2]$$
, since $\nabla f(x^*)d = 3/2d_2 = 0$
 $\Rightarrow d_2 = 0$
 $\Rightarrow d^T \nabla^2 f(x^*)d = 2d_1^2 \ge 0$

Second order necessary condition

- Proposition (Second-order necessary conditions – unconstrained case). Let x* be an interior point of the set S, and suppose x* is a relative minimum point of f ∈ C². Then
 - (i) ∇ f(x*) = 0.
 - (ii) F(x*) is positive semidefinite.

Example 4

Example: Unconstrained problem:

$$\min f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2 - 3x_2$$

Global minimum is known at $x_1 = 1$, $x_2 = 2$.

At this point,

$$\nabla f(x) = [2x_1 - x_2, -x_1 + 2x_2 - 3]$$

= [0,0]

and F(x) is positive definite.

Example 5

Example: Constrained problem:

min
$$f(x_1, x_2) = x_1^3 - x_1^2x_2 + 2x_2^2$$

s. t. $x_1, x_2 \ge 0$

 $x^* = [6, 9]$ is a solution to the first-order necessary condition:

$$\nabla f(x) |_{x} = [3x_1^2 - 2x_1x_2, -x_1^2 + 4x_2] = 0$$

But, x^* does not satisfy the second-order necessary condition,

$$F = \begin{bmatrix} 6x_1 - 2x_2 & -2x_1 \\ -2x_1 & 4 \end{bmatrix} \Big|_{x^*} = \begin{bmatrix} 18 & -12 \\ -12 & 4 \end{bmatrix}$$

Second order sufficient condition

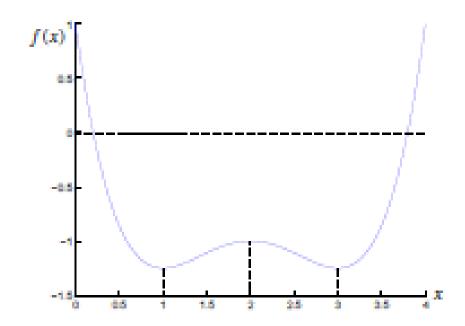
- Proposition (Second-order sufficient conditions)
 - unconstrained case). Let f ∈ C² be a function on a region in which the point x* is an interior point. Suppose in addition that
 - (i) ∇f(x*) = 0.
 - (ii) F(x*) is positive definite.

Then x^* is a strictly relative minimum point of f.

Example 6

Min
$$f(x) = \frac{1}{4}x^4 - 2x^3 + \frac{11}{2}x^2 - 6x + 1$$

s. t. $0 \le x \le 4$.



Continue

First-order information:

$$f'(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3).$$

$$f'(0) = -6, \ f'(1) = f'(2) = f'(3) = 0, \ f'(4) = 6.$$

Second-order information:

$$f''(x) = 3x^2 - 12x + 11$$

 $\Rightarrow f''(1) > 0, f''(2) < 0, f''(3) > 0.$

By checking the 1st-order necessary conditions, only x = 1, x = 2 and x = 3 are satisfied.

By checking the 2nd-order necessary conditions, only x = 1 and x = 3 are satisfied.

By checking the 2nd-order sufficient conditions, we know $x^* = 1$ or 3 with $f(x^*) = -1.25$.

Convex functions - definition

Let Ω ⊂ Eⁿ be a convex set and
 f : Ω → R be a real-valued function. Then f is convex on Ω, if

$$f(\alpha x^{1} + (1 - \alpha)x^{2}) \leq \alpha f(x^{1}) + (1 - \alpha)f(x^{2})$$

$$\forall x^1, x^2 \in \Omega \text{ and } \alpha \in [0, 1].$$

Moreover, f is strictly convex on Ω , if

$$f(\alpha x^{1} + (1 - \alpha)x^{2}) < \alpha f(x^{1}) + (1 - \alpha)f(x^{2})$$

$$\forall x^1 \neq x^2, x^1, x^2 \in \Omega \text{ and } \alpha \in (0, 1).$$

Concave functions

g: Ω → R is (strictly) concave on Ω, if
 f = -g is (strictly) convex on Ω.

Graph and epigraph of a function

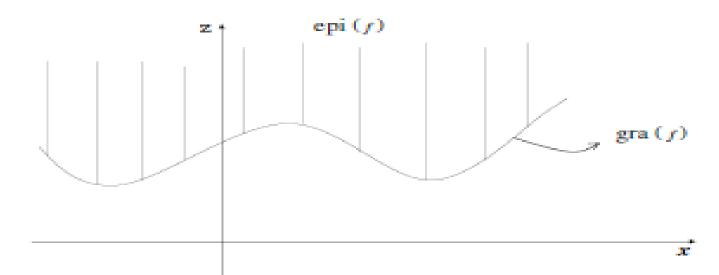
• Let $\Omega \subset E^n$ and $f: \Omega \to R$.

The graph of f is

$$gra(f) \triangleq \{(x, z) \in E^{n+1} \mid x \in \Omega \text{ and } f(x) = z\}$$

The epigraph of f is

$$epi(f) \triangleq \{(x, z) \in E^{n+1} \mid x \in \Omega \text{ and } f(x) \leq z\}$$



Set based definition of convex functions

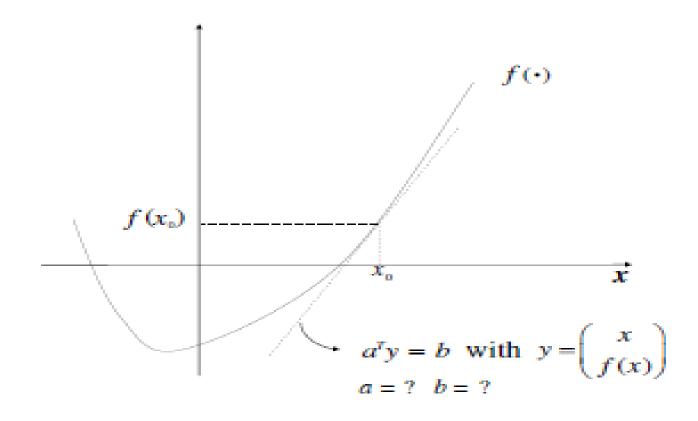
- Definition
 - A function f: Ω ⊂ Eⁿ → R is convex if epi(f) is a convex subset of Eⁿ⁺¹.

• Theorem:

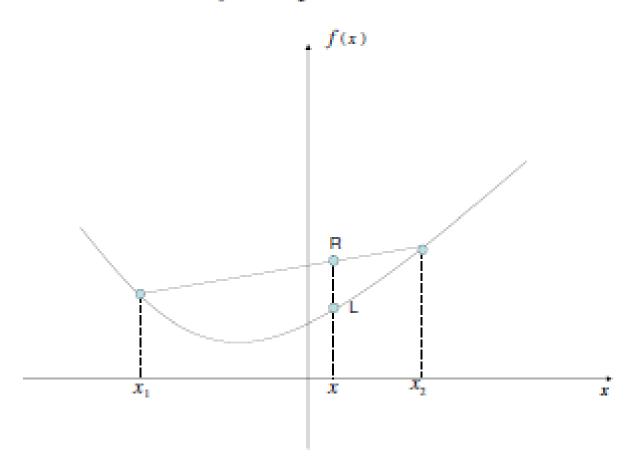
For a convex function f, if each point in gra(f) is an extreme point of epi(f), then the function f is strictly convex.

Question

Let $f: \Omega \subset E^n \to R$ be convex and $f \in C^1(\Omega)$. For $x^0 \in \Omega$, what's the supporting hyperplane of epi(f) at $(x^0, f(x^0))$



Overestimate by two-point information



• Theorem:

Let f be a convex function on a convex set $\Omega \subset E^n$.

Then

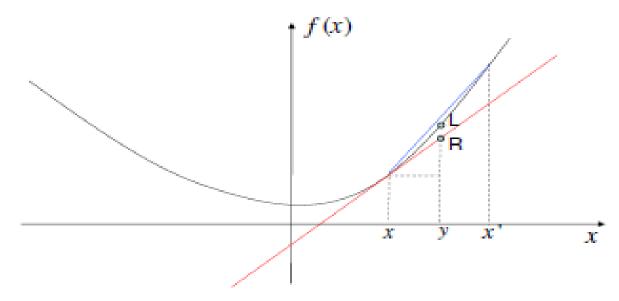
$$f(\sum_{i=1}^{m} \alpha_i x^i) \leq \sum_{i=1}^{m} \alpha_i f(x^i)$$

$$\forall x^i \in \Omega$$
, $\alpha_i \in [0,1]$ and $\sum_{i=1}^m \alpha_i = 1$
(Jensen's inequality)

• Theorem:

Let $f \in C^1$. Then f is convex on a convex set $\Omega \subset E^n$ if, and only if,

$$f(y) \ge f(x) + \nabla f(x)(y - x), \quad \forall \ x, y \in \Omega$$



(underestimate by one-point information)

Proof

(
$$\Rightarrow$$
) If f is convex, then for $x, y \in \Omega$,
$$f(\alpha y + (1-\alpha)x) \leq \alpha f(y) + (1-\alpha)f(x), \ \forall \alpha \in [0,1]$$
 For $\alpha \neq 0$,
$$\frac{f(x + \alpha(y - x)) - f(x)}{\alpha} \leq f(y) - f(x)$$
 As $\alpha \to 0$, we have
$$\nabla f(x)(y - x) \leq f(y) - f(x)$$

Proof

(⇐) Assume that

$$f(y) \ge f(x) + \nabla f(x)(y - x), \quad \forall x, y \in \Omega$$

Given $x^1, x^2 \in \Omega$, and any $\bar{\alpha} \in [0, 1]$.
Consider $\bar{x} = \bar{\alpha}x^1 + (1 - \bar{\alpha})x^2$, then

$$f(x^1) \geq f(\bar{x}) + \nabla f(\bar{x})(x^1 - \bar{x})$$

$$f(x^{2}) \ge f(\bar{x}) + \nabla f(\bar{x})(x^{2} - \bar{x})$$

Multiplying the first by $\bar{\alpha}$ and the second by $1 - \bar{\alpha}$ and adding up, we have

$$\bar{\alpha}f(x^1)+(1-\bar{\alpha})f(x^2) \ge f(\bar{x})+\nabla f(\bar{x})(\bar{\alpha}x^1+(1-\bar{\alpha})x^2-\bar{x})$$

 $= f(\bar{\alpha}x^1+(1-\bar{\alpha})x^2)+\nabla f(\bar{x})(0)$
 $= f(\bar{\alpha}x^1+(1-\bar{\alpha})x^2)$

Basic properties - 4 and 5

• Theorem:

Let $\Omega \subset E^n$ be a convex set, $f_1, f_2 : \Omega \to R$ be convex functions.

Then (i) $f_1 + f_2$ is convex on Ω (ii) βf_1 is convex on Ω , $\forall \beta \geq 0$

• Theorem:

Let f be a convex function on a convex set $\Omega \subset E^n$. Then the set $I_c \triangleq \{x \in \Omega \mid f(x) \leq c\}$ is convex, $\forall c \in R$.

• Theorem:

Let $f \in C^2$ and $\Omega \subset E^n$ is convex with $int(\Omega) \neq \phi$. Then f is convex on Ω , if and only if, the Hessian matrix F is positive semidefinite over Ω .

Proof

By Taylor's Theorem,

$$f(y) = f(x) + \nabla f(x)(y - x)$$

 $+ \frac{1}{2}(y-x)^T F(x+\alpha(y-x))(y-x)$

for some $\alpha \in [0, 1]$.

Additional properties

• Theorem:

Let $S \subset E^n$ be convex and $f: S \to R$. Then f is (strictly) convex if, and only if, $g(s) \triangleq f(x^0 + sd)$ is (strictly) convex on $I \triangleq \{s \in R \mid x^0 + sd \in S\}$ for any given $x^0 \in S$ and $d \in E^n$.

• Theorem:

Let f be (strictly) convex on $S \subset E^n$ and x = My + b is an affine transformation from E^m to E^n . Then $g(y) \triangleq f(My + b)$ is (strictly) convex on $\{y \in E^m \mid My + b \in S\}$, if M has full rank.

Additional properties

• Theorem:

Let f_j , j = 1, ..., p, be convex on $S \subset E^n$ and $\alpha_j \geq 0$. Then $f \triangleq \sum_{j=1}^p \alpha_j f_j$ is convex on S. In addition, if $\exists i$ such that f_i is strictly convex on S and $\alpha_i > 0$, then $f \triangleq \sum_{j=1}^p \alpha_j f_j$ is strictly convex on S.

Additional properties

• Theorem:

Let
$$f_j$$
, $j = 1, 2, ...$, be convex on $S \subset E^n$.
If $\lim_{j \to \infty} f_j(x)$ exists for each $x \in S$, then $f(x) \triangleq \lim_{j \to \infty} f_j(x)$ is convex on S .

• Theorem:

family of convex functions on $S \subset E^n$. Then, $f(x) \triangleq \sup_{w \in \Omega} f_w(x)$ is convex on $\{x \in S \mid \sup_{w \in \Omega} f_w(x) < +\infty\}$. In addition, if Ω is finite and f_w is strictly convex for each $w \in \Omega$, then f is strictly convex on S.

Let Ω be an index set and $\{f_w \mid w \in \Omega\}$ be a

Additional properties

• Theorem:

Let f_1 be convex on $S_1 \subset E^n$ and f_2 be convex and non-decreasing on a set $T \supset f_1(S_1)$. Then the composition function $f_2 \circ f_1(x) \triangleq f_2(f_1(x))$ is convex on S_1 . In addition, if f_1 is strictly convex on S_1 and f_2 is increasing, then $f_2 \circ f_1$ is strictly convex on S_1 .

Minimization of convex functions

• Theorem:

Let f be a convex function defined on the convex set S. Then any relative minimum of f is a global minimum and the set τ where f achieves its minimum is convex.

Proof

(i) If x* ∈ Ω is a local minimum and ∃ y ∈ Ω
 with f(y) < f(x*), then

$$f(\alpha y + (1 - \alpha)x^*) \le \alpha f(y) + (1 - \alpha)f(x^*) < f(x^*)$$

for $\alpha \in (0, 1)$

This contradicts to the fact that x^* is a local minimum.

(ii) $\tau = \{x \mid f(x) \leq f(x^*), x \in \Omega\}$ is obviously convex.

Sufficient and necessary conditions

 For convex functions, the first order necessary condition is also a sufficient condition.

• Theorem:

Let $f \in C^1$ be convex on a convex set $\Omega \subset E^n$. If $\exists x^* \in \Omega$, s.t.

$$\nabla f(x^*)(y - x^*) \ge 0, \forall y \in \Omega$$

then x^* is a global minimum of f over Ω

Proof

Proof: Since

$$f(y) \ge f(x^*) + \nabla f(x^*)(y - x^*) \ge f(x^*), \ \forall y \in \Omega,$$

and any $y \in \Omega$ can be reached from x^* along

a feasible direction $y - x^*$.

Example

 Example: Check the convexity of the following optimization problem and find its (global) minimum.

min
$$f(x_1, x_2, x_3) = 4x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2$$

 $+x_1x_3 - 3x_1 - 2x_2$

Maximization of convex functions

• Theorem:

Let f be a convex function defined on the bounded, closed convex set $\Omega \subset E^n$. If fachieves global maximum on Ω , then one maximizer falls in bdry (Ω) .

Proof

Assume $x^* \in \Omega$ is a global maximizer of f. If x^* is not a boundary point of Ω , then

$$\exists x^1, x^2 \in bdry(\Omega)$$

s.t.

$$x^* = \alpha x^1 + (1 - \alpha)x^2$$
 for some $\alpha \in (0, 1)$

By convexity of f,

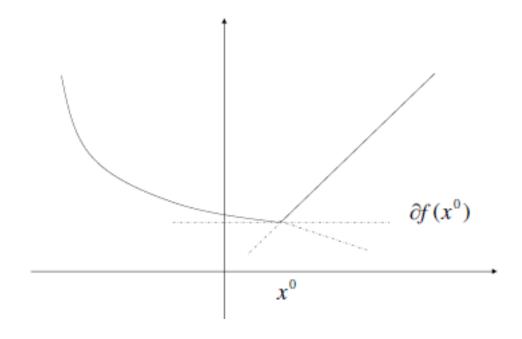
$$f(x^*) \le \alpha f(x^1) + (1 - \alpha)f(x^2)$$

 $\le \max\{f(x^1), f(x^2)\}$

Therefore either x^1 or x^2 is a global maximizer.

Non-differentiable convex functions

- Where is the first order information?
 - subgradient and subdifferential



Subgradient and subdifferential

Definition

A vector y is said to be a subgradient of a convex function f (over a set S) at a point x^0 if

$$f(x) \ge f(x^0) + \langle y, x - x^0 \rangle, \forall x \in S$$

Definition

The set of all subgradients of f at x^0 iis called the subdifferential of f at x^0 and is denoted by

$$\partial f(x^0) = \{ y \in E^n \mid f(x) \ge f(x^0) + \langle y, x - x^0 \rangle, \forall x \in S \}$$

Properties

1. The graph of the affine function

$$h(x) = f(x^0) + \langle y, x - x^0 \rangle$$

is a non-vertical supporting hyperplane to the convex set epi(f) at the point of $(x^0, f(x^0))$.

- 2. The subdifferential set $\partial f(x^0)$ is closed and convex.
- 3. $\partial f(x^0)$ can be empty, singleton, or a set with infinitely many elements. When it is not empty, f is said to be subdifferentiable at x^0 .
- 4. $\nabla f(x^0) \in \partial f(x^0)$ if f is differentiable at x^0 . $\{\nabla f(x^0)\} = \partial f(x^0)$ if f is convex and differentiable at $x^0 \in int(S)$.

Examples

- In R, f(x) = |x| is subdifferentiable at every point and $\partial f(0) = [-1, 1]$.
- In E^n , the Euclidean norm f(x) = ||x|| is subdifferentiable at every point and $\partial f(0)$ consists of all the vectors y such that

$$||x|| \ge \langle y, x \rangle$$
 for all x .

This means the Euclidean unit ball!